
System Checkpointing using Reflection and
Program Analysis

John Whaley

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

jwhaley@alum.mit.edu

Abstract. This paper describes a technique for checkpointing a running
system by a combination of reflective introspection and program analysis.
By using an extension to Java’s Reflection API which allows activation
frames and other aspects of execution state to be reflectively inspected
and modified, we can halt at and restart from arbitrary points in the
execution. We apply this checkpointing technique to an area that is not
typically associated with reflection — optimization of memory footprint
and startup time. We have successfully used this technique in the joeq

virtual machine to reduce the heap size and the application startup time
significantly.

1 Introduction

The Java programming language has gained a significant following due to a
number of reasons, including its clean, object-oriented design and automatic
storage management. It is a very popular choice for server-side applications;
however, on the client side, Java has yet to make significant headway against
more established languages like C and C++.

There are currently two major problems that must be overcome before Java
can become prevalent on the client side. The first is application startup time [5].
Applications using the Swing GUI interface can take on the order of minutes
to start up. This is due to a number of factors, including large amounts of
inefficient initialization code in the class libraries and the fact that (in most
virtual machines) the code is recompiled from class files on every execution.

The second major stumbling block in the adoption of Java on the client side
is memory footprint. Even simple GUI applications can regularly consume 20
megabytes or more of memory [8]. What is more, in most systems this memory
is not shared among applications, which means that 20 megabytes per running
instance are consumed. Again, this is due to a number of factors, including the
liberalism of virtual machine garbage collectors in allocating memory and the
dynamic and object-oriented nature of the Java language. Because of dynamic
features such as reflection and dynamic class loading, the system cannot perform
whole-program analysis to eliminate the (as-of-yet) unused fields, methods, and
other runtime data structures.



To attack these problems, we developed a general technique of checkpointing
the state of the system using reflection. Checkpointing is the act of saving the
state of a running system such that it can be recreated later in time. Checkpoint-
ing has many applications, including system recovery, debugging, bootstrapping,
and process migration. We use checkpointing for a different purpose. By running
the system up to a certain point and then checkpointing it, we can use the check-
pointed version to avoid startup time costs; in essence, application startup time
becomes bounded only by disk latency. Furthermore, we can perform analysis
during the checkpointing process to optimize the system, reducing the memory
footprint by eliminating unnecessary code, objects, fields, classes, and runtime
data structures.

Using reflection makes our technique very flexible. Because we use reflection,
we can precisely control the checkpointing process, deciding what data to ignore
and what data needs to be reinitialized on virtual machine startup. Further-
more, the technique is entirely virtual machine and architecture independent;
we actually use this technique to bootstrap the joeq virtual machine across
platforms [14].

The remainder of the paper is organized as follows. Section 2 outlines the
checkpointing technique and associated algorithms. Section 3 presents data on
the effectiveness of the technique in reducing code and heap size and improving
startup time in our implementation in the joeq virtual machine [14]. Section 4
discusses related work, and we conclude in Section 5.

2 Technique

Our basic checkpointing technique is as follows:

1. Start the virtual machine and let it execute until a desired point. Suspend
all threads.

2. Determine the root set. If necessary, inspect the activation records (stack
traces) of the threads.

3. Given the root set, determine the necessary parts of the system (code and
data) and any code necessary to reconstruct the necessary state.

4. Serialize the necessary code and data to a file, in the standard format for
the virtual machine.

5. On subsequent executions, simply map the file to memory and execute the
reconstruction code to continue execution from the given point.

Our current implementation uses a very simple flow-insensitive, context-
insensitive type-based pointer analysis to determine the necessary code and data.
Namely, any field that is accessed, any method that is called, and any class that
is instantiated is considered to reach all program points. Section 2.1 describes
the algorithm in more detail.

After the necessary code and data are determined, we serialize the code and
data in the standard format for the virtual machine. We also include relocations
for every code and data reference, so that the code and data segments can be
relocated between executions. Section 2.3 gives details on this process.



2.1 Algorithm description

doAlgorithm() {

method_worklist = buildRootSet();

while (!method_worklist.isEmpty()) {

Method m; InstructionIndex a;

(m, a) = method_worklist.pull();

analyzeReachableCode(m, a);

}

}

Fig. 1. The checkpointing algorithm

Pseudocode for the algorithm can be found in Figure 1. The algorithm first
initializes a worklist of <Method, InstructionIndex> pairs using the root set, and
then analyzes each of the methods in the worklist. There are two techniques to
obtain the root set. The first technique, which is portable, is to have it specified
by the programmer, e.g. the main method or event loop of a program. The
second technique, which requires some virtual machine extensions, is to build
the root set using the stack traces of the running threads.

addObject(Object o) {

if (table.contains(o)) return;

HeapAddress a = allocateSpace(getObjectSize(o));

table.add(o, new Pair(o, a));

addType(o.getClass());

forall (Field f = o.getClass().fields()) {

if (f.isReferenceType() && isNecessaryField(f)) addObject(f.get(o));

}

}

Fig. 2. Pseudocode for adding an object

Figure 2 contains the pseudocode for marking an object as necessary. To keep
track of the necessary objects, we use a hash table keyed on the identity hash
code of the objects. This hash table maps from the object to a pair: <object,
address>. object is a reference back to the object; address refers to the address
of the object in the output image.

When an object that has never been encountered before is added, we reserve
space for it in the output image, generate an <object, address> pair for it, and
register the pair in the hash table. We also mark the object’s type as instantiated.
Then, for each reference field of the object that has been marked as necessary,
we add the object referenced by that field.



analyzeReachableCode(Method m, InstructionIndex a) {

Worklist w = new Worklist(); w.add(a);

while (!w.isEmpty()) {

Instruction i = w.pull();

forall (Field f = i.getAccessedFields()) addField(f);

forall (Class c = i.getInstantiatedTypes()) addType(c);

forall (Method m2 = i.getTargetMethods()) addMethodToWorklist(m2, 0);

forall (Instruction j = i.successors()) w.add(j);

}

}

Fig. 3. Pseudocode for analyzing the reachable code from a given starting point

Figure 3 contains pseudocode for analyzing the reachable code from a given
starting point. We traverse the instructions using a worklist algorithm. For each
instruction, any field that can be accessed is added to the list of necessary fields.
Likewise, if an instruction can instantiate an object, we add the type to the
set of instantiated types. For call instructions, we add all target methods to the
method worklist. Finally, we add the indices of all possible successor instructions
in the current method to the worklist.

addType(Class c) {

if (classes.contains(c)) return; classes.add(c);

addObject(c);

forall (Method m = visited_methods) {

if (c.overrides(m)) addMethodToWorklist(c.getMethod(m), 0);

}

}

Fig. 4. Pseudocode for marking a type as instantiated

Figure 4 gives the pseudocode for marking a type as instantiated. When a
new type is encountered, we add the Class object, which ensures that the vtable
and other run time structures will be correctly allocated in the image. We then
add the implementations of any necessary overridden method to the worklist.

Figure 5 lists the pseudocode for adding a field as necessary. When adding a
new reference (non-primitive) instance field to the necessary set, we need to add
any objects that are reachable via that field on already visited objects, so we
iterate through the set of necessary objects that contain the newly added field
and use reflection to get their values. In the case of reference static fields, we
always add their values.



addField(Field f) {

if (fields.contains(f)) return; fields.add(f);

if (f.isReferenceType()) {

if (f.isInstanceField()) {

forall (Object o = necessaryObjects()) {

if (o.getClass().containsField(f)) addObject(f.get(o));

}

} else addObject(f.get(null));

}

}

Fig. 5. Pseudocode for marking a field as necessary

2.2 Generating startup code

Some objects contain values that are specific to the particular execution instance,
or require some code to be executed on startup. For example, memory needs to
be reallocated and file handles need to be reopened. Therefore, the algorithm also
calculates the code to be executed during virtual machine startup to reinitialize
the execution-specific data values.

Execution-specific data values are determined in one of two ways. The first
way is by using the type of the object. Certain fields in objects always refer
to data that is execution instance specific and therefore must be reinitialized
on virtual machine startup. When reflectively inspecting these fields, we keep
track of their instances so that we can generate the correct reinitialization code.
In some cases, it is not possible to reconstruct the state using only the object
fields. In such cases, we run the application using instrumented versions of the
initialization routines which cache the incoming parameters. To perform reini-
tialization, we simply call those routines again with the same parameters. Some
data values that are execution-specific cannot be determined solely by their type.
For example, system properties are stored as Strings in a Vector object, so we
cannot determine simply from their type that they should be reinitialized at
run time. We explicitly enumerate such values along with the code necessary to
reinitialize them.

In some cases, special application knowledge is necessary for correct check-
pointing. If code has executed that was dependent on some value that may change
between executions, we may run into problems. In such cases, the programmer
must manually specify the application data to be reinitialized along with the
code necessary to perform the reinitialization. However, in many applications
such code is not necessary [9].

2.3 Serializing the code and data

After we have determined the set of necessary objects, methods, fields, and
classes, we serialize them to a file using the standard object format for the
virtual machine. We iterate through all of the entries in the hash table by starting



Fields Fields Objects Objects Heap Size Heap Size Code Size Code Size
Before After Before After Before After Before After

joeq 3840 2590 474231 326539 16690524 11029044 939981 774637
javac 5674 3882 587061 432073 20752496 14829948 1310719 1138206

SwingSet 13496 11491 1040864 687935 38333768 24642388 2157767 1745599
Forte 19348 15698 3832894 1812932 64398534 38304308 3639503 3048391

Fig. 6. Savings in heap memory

Original Checkpoint
Startup time Startup time

joeq 27.2 s 1.7 s
javac 35.7 s 1.9 s

SwingSet 140.7 s 3.6 s
Forte 241.6 s 5.9 s

Fig. 7. Savings in startup time

address, using reflection to examine each of their fields and writing the object
at the specified address. For each non-null object reference that we encounter,
we also store relocation information so that it can be successfully relocated.
Likewise, we generate code for all of the necessary methods, adding relocations
where necessary.

3 Results

This section presents some experimental results from our implementation in the
joeq virtual machine [14]. In the results, joeq refers to the “application” of the
virtual machine itself. javac refers to Sun’s javac compiler. SwingSet is the
example Swing application contained in the standard Java distribution. Forte
is the Forte for Java integrated development environment. Applications were
executed to the start of their main methods and checkpointed at that point.

Table 6 shows the reduction in heap and code size after our technique. As we
can see from this data, our technique is very effective in reducing object counts
and heap size, up to a 39% reduction. It also significantly reduces code size, up
to 19%.

Table 7 shows the reduction in startup time due to our technique. The times
given in the table are wall-clock times until the entry point of the application.
We rebooted between runs to avoid caching effects. The first column is the time
it takes to start up the application normally. The second column gives the time
it takes to start up the application from the checkpointed file. All timings were
taken when executing on the joeq virtual machine. We were able to attain huge
savings on application startup time with our technique. The checkpoint version
was, in essence, bounded by disk time. Later executions (once the checkpoint
file was in the disk cache) only took a fraction of a second.



4 Related work

The technique described in this paper of system checkpointing using execution-
state reflection has similarities to many prior techniques. In this section, we
compare and contrast our technique to related work.

Our overall checkpointing technique is similar to a proposal called Orthog-
onal Persistence for the Java platform (OPJ) [2]. Orthogonal persistence is an
approach to making application objects persist between program executions. To
assist in recreating state, similar to our technique OPJ uses restart callbacks,
which allow the programmer to specify code that will be executed on restart.
The major difference between our technique and OPJ is that because OPJ is
only concerned with persisting individual objects, it requires more support from
the application program. It does not perform any kind of program analysis; it
simply uses reachability. Furthermore, OPJ requires the use of a special virtual
machine, whereas our technique can use the built-in Java Reflection API.

Our technique is similar to the technique used by the Jalapeño virtual ma-
chine to bootstrap itself [1]. However, the Jalapeño technique does not include
any support for the serialization of execution state, nor does it support reinitial-
izing state at run time. Also, it does not include any sort of program analysis to
determine the extent of the checkpointing.

There has been other work on checkpointing in the context of migrating ap-
plications [10], using extra processors for fault tolerance [12], post-mortem and
replay debugging, elimination of boundary condition errors [13], etc. Our work is
very similar to user-level transparent checkpointing techniques [11]. Such tech-
niques usually work by compiling the application program with a special check-
pointing library. Our technique, on the other hand, relies on program analysis
and therefore can optimize the result for size and speed. Our system also shares
many of the same restrictions as user-level checkpointers; for example, programs
should not cache certain types of data [9].

Other researchers have attacked Java’s large memory usage and long startup
times in other ways. Systems like Echidna [4], rheise os [6], and others [3] al-
low multiple “processes” to run inside a single virtual machine. This allows the
virtual machine startup time and the memory consumption for the base virtual
machine to be amortized across each process.

The analysis technique of using the program state to optimize code has sim-
ilarities to the well-known technique of partial evaluation [7]. The analysis as
described here is very simple and only makes minimal use of the available infor-
mation. Much more extensive use of the data to perform true partial evaluation
optimizations is possible.

5 Conclusion

Checkpointing has many useful applications, such as system recovery, debug-
ging, bootstrapping, and process migration. This paper introduces a new use for
checkpointing — improving startup time and memory footprint. Our checkpoint-
ing technique uses a combination of reflection and program analysis to determine



the necessary parts of the program, and serializes only those parts. By using re-
flection, our technique is very general and powerful. We can easily and precisely
adjust what data we checkpoint and automatically generate reinitialization code
for data that must be reinitialized on every execution.

We implemented this technique in the joeq virtual machine and presented
performance results that show that even with a very simple flow-insensitive and
context-insensitive program analysis, this technique can be very effective in re-
ducing application startup time and memory footprint.

There are many further opportunities for taking advantage of the extra infor-
mation about the program that is available at checkpoint time. For example, by
using partial evaluation, we can optimize the application based on values that
are not known at compile time, but known at the checkpoint time. A higher level
example is to examine the elements of a hash table and use them to derive a
perfect hash function. Such techniques will improve not only startup time and
heap size, but also overall execution time.

References

1. B. Alpern. Jalapeño virtual machine. IBM Systems Journal, 39(1):211–238, 2000.
2. M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence. An orthog-

onally persistent Java. ACM SIGMOD Record, 25(4):68–75, Dec. 1996.
3. G. Czajkowski. Application isolation in the Java virtual machine. In Proceedings

of OOPSLA-00, pp. 354–366, Oct. 15–19 2000.
4. L. Gorrie. Echidna http://www.javagroup.org/echidna, 1998.
5. E. Gun, S. Arthur, J. Gregory, and B. Bershad. A practical approach for improving

startup latency in Java applications, In Proceedings of the Workshop on Compiler
Support for Systems Software, Atlanta, Georgia, May 1999.

6. R. Heise. rheise.os. http://www.progsoc.uts.edu.au/r̃heise/projects/rheise.os
7. N. Jones, C. Gomard, and P. Sestoft. Partial evaluation and automatic program

generation. Prentice Hall. 1993.
8. Tornado Labs. Java 3D benchmark results. http://www.tornadolabs.com/News/

BenchJ3d Results/benchj3d results.html, 2000.
9. M. Litzkow and M. Livny. Making workstations a friendly environment for batch

jobs. In Proc. 3rd Wks. on Work. Oper. Sys., April 1992.
10. M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration

of unix processes in the Condor distributed processing system, 1997.
11. J. S. Plank. An overview of checkpointing in uniprocessor and distributed systems,

focusing on implementation and performance. Tech Report UT-CS-97-372, 1997.
12. J. S. Plank, Y. Kim, and J. J. Dongarra. Algorithm-based diskless checkpointing

for fault-tolerant matrix operations. In FTCS-25: 25th International Symposium
on Fault Tolerant Computing Digest of Papers, pp. 351–360, 1995.

13. Y. M. Wang, Y. Huang, and W. K. Fuchs. Progressive retry for software error
recovery in distributed systems. In Proc. 23rd Int. Conf. on Fault-Tolerant Com-
puting (FTCS-23), pp. 138–144, Toulouse, France, 1993.

14. J. Whaley. joeq virtual machine. http://joeq.sourceforge.net, 2001.


