Partial Redundancy Elimination

CS243 Review Session

(With many thanks to Chinmayee Shah, TA in Winter 2017)
Full Redundancy

\[x = b + c \]
\[y = b + c \]
\[z = b + c \]
Partial Redundancy

\[x = b + c \]

\[z = b + c \]
Partial Redundancy
Walk-through Example
\[u = a + b \]
\[v = a + b \]
\[w = a + b \]
\[b = \text{read()} \]
Add empty blocks on edges that lead to blocks with multiple predecessors.
\[u = a + b \]

\[v = a + b \]

\[w = a + b \]

\[b = \text{read()} \]
Anticipated expressions:
places where it is safe to place \(a + b \)
Can delete added blocks where \(a + b \) is not anticipated
Available expressions: points where \(a + b \) could be made available.
Earliest: when can we earliest compute $a + b$
u = a + b

v = a + b

w = a + b

b = read()

Earliest: when can we earliest compute \(a + b \)
How much can we postpone evaluating $a + b$?
u = a + b

v = a + b

w = a + b

b = read()

Latest: need to compute a + b here
\(u = a + b \)

\(v = a + b \)

\(w = a + b \)

\(b = \text{read()} \)

Latest: need to compute \(a + b \) here
Remove added blocks where we are not going to compute anything
\[u = t \]
\[t = a + b \]
\[v = t \]
\[w = t \]

Use a temporary variable to store the result
\[u = t \]
\[v = t \]
\[w = t \]
\[t = a + b \]
\[b = \text{read()} \]
\[t = a + b \]
\[u = t \]

\[t = a + b \]

\[v = t \]

\[t = a + b \]

\[w = t \]

\[b = \text{read()} \]

\[t = a + b \]

Result not used beyond the block in which the variable is defined
Clean up unrequired temporaries

\[u = t \]

\[v = a + b \]

\[t = a + b \]

\[w = t \]

\[b = \text{read()} \]
\[u = t \]
\[v = a + b \]
\[t = a + b \]
\[w = t \]
\[b = \text{read()} \]

Diagram:

- B1
- B2: \[t = a + b \]
- B3
- B4
- B5: \[v = a + b \]
- B6
- B7
- B8: \[t = a + b \]
- B9
- B10: \[b = \text{read()} \]
- B11
More Examples
i = 0

B1

a = b + c
... = a
i = i + 1
i < 1000

B2

B3

z = b + c
\[i = 0 \]
\[a = b + c \]
\[z = b + c \]

\[i = i + 1 \]
\[i < 1000 \]

\[t = b + c \]
\[a = t \]
\[z = t \]

\[i = i + 1 \]
\[i < 1000 \]
\[c = 2 \]

\[d = b + c \]

\[e = b + c \]

\[a = b + c \]
\[c = 2 \]
\[d = b + c \]
\[e = b + c \]
\[a = b + c \]