Lecture 9

Basic Parallelization

I. Introduction
II. Data Dependence Analysis
III. Beyond Data Dependences

Chapter 11.1-11.1.4
Machine Learning is Expensive

7 ExaFLOPS
60 Million Parameters

20 ExaFLOPS
300 Million Parameters

100 ExaFLOPS
8700 Million Parameters

2015
Microsoft ResNet
Superhuman Image Recognition

2016
Baidu Deep Speech 2
Superhuman Voice Recognition

2017
Google Neural
Machine Translation
Near Human Language Translation

1 ExaFLOPS = 10^{18} FLOPS
Nvidia Volta GV100 GPU

80 Stream Multiprocessors
In each stream multiprocessor

- 64 FP32 cores
- 64 int cores
- 32 FP64 cores
- 8 Tensor cores

Tensor Cores
D = A x B + C;
A, B, C, D are 4x4 matrices
4 x 4 x 4 matrix processing array
1024 floating point ops / clock

FP32: 15 TFLOPS
FP64: 7.5 TFLOPS
Tensor: 120 TFLOPS

https://wccftech.com/nvidia-volta-tesla-v100-cards-detailed-150w-single-slot-300w-dual-slot-gv100-powered-pcie-accelerators/
Why Automatic Parallelization?

- Domains: scientific applications, signal processing, machine learning
 - Simpler but very useful domains
 - Has dense matrices
 - Lots of parallelism, ways to parallelize
 - But still hard to get good performance
 - Machine dependent, automation provides portability

- Understanding automatic parallelization makes you a better programmer for parallel machines

- Beautiful abstraction: linear algebra, integer linear programming
Parallelization of Numerical Applications

• **DoAll loop parallelism**
 – Find loops whose iterations are independent
 – Number of iterations typically scales with the problem
 – Usually much larger than the number of processors in a machine
 – Divide up iterations across machines

• **Doacross loop parallelism** and **Loop Transformations** in the next class
Iteration Space

FOR \(i = 0 \) to 5
FOR \(j = i \) to 7
 ...

• n-deep loop nests: n-dimensional polytope
• Iterations: coordinates in the iteration space
• Assume: iteration index is incremented by 1 in the loop
• Sequential execution order: lexicographic order
 – \([0,0], [0,1], \ldots, [0,6], [0,7], [1,1], \ldots, [1,6], [1,7], \ldots\)
Basic Parallelism

Examples:

FOR i = 1 to 100

FOR i = 11 TO 20
 \(A[i] = A[i-1] + 3 \)

FOR i = 11 TO 20
 \(A[i] = A[i-10] + 3 \)

• Does there exist a data dependence edge between two different iterations?
• A data dependence edge is loop-carried if it crosses iteration boundaries
• DoAll loops: loops without loop-carried dependences
Affine Array Accesses

- Common patterns of data accesses: (i, j, k are loop indexes)

 \]
 \[A[i,j], A[i-1, j+1]\]

- Domain of data dependence analysis
 - Array indexes are affine expressions of surrounding loop indexes
 - Loop indexes: \(i_n, i_{n-1}, \ldots, i_1\)
 - Integer constants: \(c_n, c_{n-1}, \ldots, c_0\)
 - Array index: \(c_n i_n + c_{n-1} i_{n-1} + \ldots + c_1 i_1 + c_0\)
 - Affine expression: linear expression + a constant term \((c_0)\)

 - Loop bounds are affine expressions of outer loop indexes

 - Extend indexes to include symbolic constants: variables with constant values inside the loops
II. Recall: Data Dependences

- True dependence:
 \[a = \]
 \[= a \]

- Anti-dependence:
 \[= a \]
 \[a = \]

- Output dependence
 \[a = \]
 \[a = \]
Formulating Data Dependence Analysis

FOR i := 2 to 5 do

• Between read access A[i] and write access A[i-2] there is a dependence if:
 – there exist two iterations \(i_r\) and \(i_w\) within the loop bounds, s.t.
 – iterations \(i_r\) & \(i_w\) read & write the same array element, respectively

\[
\exists \text{integers } i_w, i_r \quad 2 \leq i_w, i_r \leq 5 \quad i_r = i_w - 2
\]

• Between write access A[i-2] and write access A[i-2] there is a dependence if:

\[
\exists \text{integers } i_w, i_v \quad 2 \leq i_w, i_v \leq 5 \quad i_w - 2 = i_v - 2
\]

 – To rule out the case when the same instance depends on itself:
 • add constraint \(i_w \neq i_v\)
Memory Disambiguation

is

Undecidable at Compile Time

read(n)
For i =
 a[i] = a[n]
Domain of Data Dependence Analysis

• Only use loop bounds and array indexes that are affine functions of loop variables and symbolic constants

\[
\text{for } i = 1 \text{ to } n \\
\text{for } j = 2i \text{ to } 100 \\
a[i+2j+3][4i+2j][i*i] = ... \\
... = a[1][2i+1][j]
\]

• Equate each dimension of array access; ignore non-affine ones
 – No solution \(\rightarrow\) No data dependence
 – Solution \(\rightarrow\) there may be a dependence
Domain of Data Dependence Analysis

- Only use loop bounds and array indexes that are affine functions of loop variables and symbolic constants

\[
\text{for } i = 1 \text{ to } n \\
\text{for } j = 2i \text{ to } 100 \\
\quad a[i+2j+3][4i+2j][i*i] = ... \\
\quad ... = a[1][2i+1][j]
\]

Let a read instance be denoted with indexes \(i_r, j_r\) and a write instance be denoted with indexes \(i_w, j_w\).
Assume a data dependence between the read & write operation if:

\[
\exists \text{ Integers } i_r, j_r, i_w, j_w, n
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w \\
n
\end{bmatrix}
+
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix}
\geq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r \\
n
\end{bmatrix}
+
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix}
\leq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 2
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w
\end{bmatrix}
+
\begin{bmatrix}
3 \\
0
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 \\
2 & 0
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r
\end{bmatrix}
+
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\]
Complexity of Data Dependence Analysis

For every pair of accesses not necessarily distinct \((F_1, f_1)\) and \((F_2, f_2)\) one must be a write operation

Let \(B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0\) be the corresponding loop bound constraints,

\[
\exists \text{ integers } i_1, i_2 \quad B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0
\]

\[
F_1 i_1 + f_1 = F_2 i_2 + f_2
\]

If the accesses are not distinct, then add the constraint \(i_1 \neq i_2\)

• Equivalent to integer linear programming

\[
\exists \text{ integer } i \quad A_1 i \leq b_1 \quad A_2 i = b_2
\]

• Integer linear programming is \text{NP-complete}
 – \(O(\text{size of the coefficients})\) or \(O(n^n)\)
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • If there is no solution, then there is no integer solution
Fourier-Motzkin Elimination

- To eliminate a variable from a set of linear inequalities.
- To eliminate a variable x_1
 - Rewrite all expressions in terms of lower or upper bounds of x_1
 - Create a transitive constraint for each pair of lower and upper bounds.
- Example: Let L, U be lower bounds and upper bounds resp
 - To eliminate x_1:

\[
\begin{align*}
L_1(x_2, \ldots, x_n) & \leq x_1 \leq U_1(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq x_1 \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]

\[
\begin{align*}
L_1(x_2, \ldots, x_n) & \leq U_1(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]
Example

```plaintext
FOR i = 1 to 5
    FOR j = i+1 to 5
        A[i,j] = f(A[i,i], A[i-1,j])

        write
        1 ≤ i
        i ≤ 5
        i + 1 ≤ j
        j ≤ 5

        read
        1 ≤ i'
        i' ≤ 5
        i' + 1 ≤ j'
        j' ≤ 5

1. Writes: A[i,j] trivially has no dependence

2: Data dep between A[i,j], A[i',i']
    i = i'
    j = i'
    i'+1 ≤ i'
    1 ≤ 0
```

3: Data dep between A[i,j] and A[i'-1,j']
 i = i' - 1 => i+1 = i'
 j = j'

Substituting i', j' in read loop bounds
 1 ≤ i + 1,
 i + 1 ≤ 5
 i + 2 ≤ j
 j ≤ 5

Combining loop bounds for write & read
 1 ≤ i; i ≤ 4
 i ≤ j -2; j ≤ 5

Eliminating i using Fourier-Motzkin:
 1 ≤ 4; 1 ≤ j -2; j ≤ 5

Eliminating j using Fourier-Motzkin:
 3 ≤ 5
Data Dependence Analysis Algorithm

- Typically solving many tiny, repeated problems
 - Integer linear programming packages optimize for large problems
 - Use memoization to remember the results of simple tests

- Apply a series of relatively simple tests
 - GCD: 2*i, 2*i+1; GCD for simultaneous equations
 - Test if the ranges overlap

- Backed up by a more expensive algorithm
 - Use Fourier-Motzkin Elimination to test if there is a real solution
 - Keep eliminating variables to see if a solution remains
 - Add heuristics to encourage finding an integer solution.
 - Create 2 subproblems if a real, but not integer, solution is found.
 - For example, if x = .5 is a solution,
 create two problems,
 by adding $x \leq 0$ and $x \geq 1$ respectively to original constraint.
IV. Beyond Data Dependences

Privatization:
• Scalar

```java
for i = 1 to n
    t = (A[i] + B[i]) / 2;
    C[i] = t * t;
```

• Array

```java
for i = 1 to n
    for j = 1 to n
        t[j] = (A[i,j] + B[i,j]) / 2;
    for j = 1 to n
        C[i,j] = t[j] * t[j];
```

Reduction:

```java
for i = 1 to n
    sum = sum + A[i];
```
Interprocedural Parallelization

- **Interprocedural symbolic analysis**
 - Find interprocedural array indexes which are affine expressions of outer loop indices

- **Interprocedural parallelization analysis**
 - Data dependence based on summaries of array regions accessed
 - If the regions intersect, there is no parallelism
 - Find privatizable scalar variables and arrays
 - Find scalar and array reductions
Example: 2D FFT

Parallelizing innermost loops will slow down the program!
Outermost loop parallelized over 1000 lines of code
Requires interprocedural parallelization techniques.
Conclusions

• Basic parallelization
 – Doall loop: loops with no loop-carried data dependences
 – Data dependence for affine loop indexes = integer linear programming

• Outer loop is more coarse-grain
 – Less barrier overhead, less interprocessor communication
 – Interprocedural analysis is useful for coarse-grain parallelism
 • Ask users for help on unresolved dependences

• General Lesson
 – Formulation of data dependence analysis as ILP
 • Is an overkill
 • Is a general math framework that ends years of incremental patches to heuristics to handle cases discovered in practice