Lecture 9
Basic Parallelization

I. Introduction
II. Data Dependence Analysis
III. Loop Nests
IV. Beyond Data Dependences

Chapter 11.1-11.1.4
Machine Learning is Expensive

- 7 ExaFLOPS, 60 Million Parameters
- 20 ExaFLOPS, 300 Million Parameters
- 100 ExaFLOPS, 8700 Million Parameters

2015
Microsoft ResNet Superhuman Image Recognition

2016
Baidu Deep Speech 2 Superhuman Voice Recognition

2017
Google Neural Machine Translation Near Human Language Translation

1 ExaFLOPS = 10^{18} FLOPS
Nvidia Volta GV100 GPU

80 Stream Multiprocessors

In each stream multiprocessor

- 64 FP32 cores
- 64 int cores
- 32 FP64 cores
- 8 Tensor cores

Tensor Cores

D = A x B + C;

A, B, C, D are 4x4 matrices

4 x 4 x 4 matrix processing array

1024 floating point ops / clock

FP32: 15 TFLOPS
FP64: 7.5 TFLOPS
Tensor: 120 TFLOPS

https://wccftech.com/nvidia-volta-tesla-v100-cards-detailed-150w-single-slot-300w-dual-slot-gv100-powered-pcie-accelerators/
Why Automatic Parallelization?

• Domains: scientific applications, signal processing, machine learning
 – Simpler but very useful domains
 – Has dense matrices
 – Lots of parallelism, ways to parallelize
 – But still hard to get good performance
 – Machine dependent

• Understanding parallelization makes you a better programmer for parallel machines

• Beautiful abstraction: linear algebra, integer linear programming
Parallelization of Numerical Applications

• **DoAll loop parallelism**
 – Find loops whose iterations are independent
 – Number of iterations typically scales with the problem
 – Usually much larger than the number of processors in a machine
 – Divide up iterations across machines

• **Doacross loop parallelism** and **Loop Transformations** in the next class
Iteration Space

FOR i = 0 to 5
 FOR j = i to 7
 ...

- n-deep loop nests: n-dimensional polytope
- Iterations: coordinates in the iteration space
- Assume: iteration index is incremented in the loop
- Sequential execution order: lexicographic order
 - [0,0], [0,1], ..., [0,6], [0,7],
 [1,1], ..., [1,6], [1,7], ...

0 ≤ i
i ≤ 5
i ≤ j
j ≤ 7
Basic Parallelism

Examples:

FOR i = 1 to 100
\[A[i] = B[i] + C[i] \]

FOR i = 11 TO 20
\[a[i] = a[i-1] + 3 \]

FOR i = 11 TO 20
\[a[i] = a[i-10] + 3 \]

• Does there exist a data dependence edge between two different iterations?
• A data dependence edge is loop-carried if it crosses iteration boundaries
• DoAll loops: loops without loop-carried dependences
Affine Array Accesses

- Common patterns of data accesses: (i, j, k are loop indexes)
 \[A[i,j], A[i-1, j+1] \]

- Domain of data dependence analysis
 - Array indexes are affine expressions of surrounding loop indexes
 - Loop indexes: \(i_n, i_{n-1}, \ldots, i_1 \)
 - Integer constants: \(c_n, c_{n-1}, \ldots, c_0 \)
 - Array index: \(c_n i_n + c_{n-1} i_{n-1} + \ldots + c_1 i_1 + c_0 \)
 - Affine expression: linear expression + a constant term \((c_0) \)

 - Loop bounds are affine expressions of outer loop indexes

 - Extend indexes to include symbolic constants: variables with constant values inside the loops
II. Recall: Data Dependences

• True dependence:
 \[a = \]
 \[= a \]

• Anti-dependence:
 \[= a \]
 \[a = \]

• Output dependence
 \[a = \]
 \[a = \]
Formulating Data Dependence Analysis

FOR i := 2 to 5 do

• Between read access A[i] and write access A[i-2] there is a dependence if:
 – there exist two iterations i_r and i_w within the loop bounds, s.t.
 – iterations i_r & i_w read & write the same array element, respectively

 \exists integers $i_w, i_r \ 2 \leq i_w, i_r \leq 5 \ \ i_r = i_w - 2$

• Between write access A[i-2] and write access A[i-2] there is a dependence if:

 \exists integers $i_w, i_v \ 2 \leq i_w, i_v \leq 5 \ \ i_w - 2 = i_v - 2$

 – To rule out the case when the same instance depends on itself:
 • add constraint $i_w \neq i_v$
Memory Disambiguation

is

Undecidable at Compile Time

read(n)
For i =
a[i] = a[n]
Domain of Data Dependence Analysis

- Only use loop bounds and array indexes that are affine functions of loop variables and symbolic constants

 for i = 1 to n
 for j = 2i to 100

 \[a[i+2j+3][4i+2j][i\times i] = \ldots\]

 \[\ldots = a[1][2i+1][j]\]

- Assume a data dependence between the read & write operation if:
 - Let a read instance be denoted with indexes \(i_r, j_r\) and
 - a write instance be denoted with indexes \(i_w, j_w\)

\[\exists\text{Integers } i_r, j_r, i_w, j_w, n\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}\begin{bmatrix}
i_w \\
j_w \\
n
\end{bmatrix} +
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix} \geq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}\begin{bmatrix}
i_r \\
j_r \\
n
\end{bmatrix} +
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix} \geq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 2
\end{bmatrix}\begin{bmatrix}
i_w \\
j_w
\end{bmatrix} +
\begin{bmatrix}
3 \\
0
\end{bmatrix} =
\begin{bmatrix}
0 & 0 \\
0 & 2
\end{bmatrix}\begin{bmatrix}
i_r \\
j_r
\end{bmatrix} +
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\]
Domain of Data Dependence Analysis

- Equate each dimension of array access; ignore non-affine ones
 - No solution \Rightarrow No data dependence
 - Solution \Rightarrow there may be a dependence
Complexity of Data Dependence Analysis

For every pair of accesses not necessarily distinct \((F_1, f_1)\) and \((F_2, f_2)\) one must be a write operation

Let \(B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0\) be the corresponding loop bound constraints,

\[
\exists \text{ integers } i_1, i_2 \quad B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0
\]

\[
F_1 i_1 + f_1 = F_2 i_2 + f_2
\]

If the accesses are not distinct, then add the constraint \(i_1 \neq i_2\)

- Equivalent to integer linear programming

\[
\exists \text{ integer } \tilde{i} \quad A_1 \tilde{i} \leq \tilde{b}_1, \quad A_2 \tilde{i} = \tilde{b}_2
\]

- Integer linear programming is \(\text{NP-complete}\)
 - \(O(\text{size of the coefficients})\) or \(O(n^n)\)
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • If there is no solution, then there is no integer solution
Fourier-Motzkin Elimination

• To eliminate a variable from a set of linear inequalities.
• To eliminate a variable x_1
 – Rewrite all expressions in terms of lower or upper bounds of x_1
 – Create a transitive constraint for each pair of lower and upper bounds.
• Example: Let L, U be lower bounds and upper bounds resp
 – To eliminate x_1:

\[
\begin{align*}
L_1(x_2, \ldots, x_n) & \leq x_1 \leq U_1(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq x_1 \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]

\[
\begin{align*}
L_1(x_2, \ldots, x_n) & \leq U_1(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]
Example

FOR \(i = 1 \) to 5

FOR \(j = i+1 \) to 5

\[A[i,j] = f(A[i,i], A[i-1,j]) \]

write

\[1 \leq i \]
\[i \leq 5 \]
\[i + 1 \leq j \]
\[j \leq 5 \]

read

\[1 \leq i' \]
\[i' \leq 5 \]
\[i' + 1 \leq j' \]
\[j' \leq 5 \]

1: Data dep between \(A[i,j], A[i',i'] \)

\[i = i' \]
\[j = i' \]
\[i' + 1 \leq i' \]

2: Data dep between \(A[i,j] \) and \(A[i'-1,j'] \)

\[i = i' - 1 \Rightarrow i + 1 = i' \]
\[j = j' \]

Substituting

\[1 \leq i + 1, \quad i + 1 \leq 5 \]
\[i + 2 \leq j, \quad j \leq 5 \]

Combining

\[1 \leq i; \quad i \leq 4 \quad i \leq j - 2; \quad j \leq 5 \]

Eliminating \(i \):

\[1 \leq 4; \quad 1 \leq j - 2; \quad j \leq 5 \]
\[3 \leq j; \quad j \leq 5 \]

Eliminating \(j \):

\[3 \leq 5 \]
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • Add heuristics to encourage finding an integer solution.
 – Create 2 subproblems if a real, but not integer, solution is found.
 • For example, if \(x = .5 \) is a solution,
 create two problems,
 by adding \(x \leq 0 \) and \(x \geq 1 \) respectively to original constraint.
III. Parallelism in Loop Nests

- **Matrix Multiplication:**
  ```c
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      for (k = 0; k < n; k++) {
        Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
      }
    }
  }
  ```
Degrees of Parallelism

- **Matrix Multiplication:**
  ```c
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      for (k = 0; k < n; k++) {
        Z[i][j] = Z[i][j] + X[i][k]*Y[k][j];
      }
    }
  }
  ```
IV. Beyond Data Dependences

Privatization:
• Scalar

 \[
 \text{for } i = 1 \text{ to } n \\
 t = (A[i] + B[i]) / 2; \\
 C[i] = t \times t;
 \]

• Array

 \[
 \text{for } i = 1 \text{ to } n \\
 \text{for } j = 1 \text{ to } n \\
 t[j] = (A[i,j] + B[i,j]) / 2; \\
 \text{for } j = 1 \text{ to } n \\
 C[i,j] = t[j] \times t[j];
 \]

Reduction:

\[
\text{for } i = 1 \text{ to } n \\
\text{sum} = \text{sum} + A[i];
\]
Interprocedural Parallelization

• Interprocedural symbolic analysis
 – Find interprocedural array indexes which are affine expressions of outer loop indices

• Interprocedural parallelization analysis
 – Data dependence based on summaries of array regions accessed
 • If the regions intersect, there is no parallelism
 – Find privatizable scalar variables and arrays
 – Find scalar and array reductions
An Example
Conclusions

• Basic parallelization
 – Doall loop: loops with no loop-carried data dependences
 – Data dependence for affine loop indexes = integer linear programming

• Outer loop is more coarse-grain
 – Less barrier overhead, less interprocessor communication
 – Interprocedural analysis is useful for coarse-grain parallelism
 • Ask users for help on unresolved dependences