Lecture 9
Basic Parallelization

I. Introduction
II. Data Dependence Analysis
III. Loop Nests + Locality
IV. Interprocedural Parallelization

Chapter 11.1-11.1.4
Machine Learning is Expensive

7 ExaFLOPS
60 Million Parameters

20 ExaFLOPS
300 Million Parameters

100 ExaFLOPS
8700 Million Parameters

2015
Microsoft ResNet
Superhuman Image Recognition

2016
Baidu Deep Speech 2
Superhuman Voice Recognition

2017
Google Neural Machine Translation
Near Human Language Translation

1 ExaFLOPS = 10^{18} FLOPS
Nvidia Volta GV100 GPU

80 Stream Multiprocessors
In each stream multiprocessor

- 64 FP32 cores
- 64 int cores
- 32 FP64 cores
- 8 Tensor cores

Tensor Cores

\[D = A \times B + C; \]

A, B, C, D are 4x4 matrices

4 x 4 x 4 matrix processing array

1024 floating point ops / clock

- FP32: 15 TFLOPS
- FP64: 7.5 TFLOPS
- Tensor: 120 TFLOPS

https://wccftech.com/nvidia-volta-tesla-v100-cards-detailed-150w-single-slot-300w-dual-slot-gv100-powered-pcie-accelerators/
Why Automatic Parallelization?

- Domains: scientific applications, signal processing, machine learning
 - Simpler but very useful domains
 - Has dense matrices
 - Lots of parallelism, ways to parallelize
 - But still hard to get good performance
 - Machine dependent

- Understanding parallelization makes you a better programmer for parallel machines

- Beautiful abstraction: linear algebra, integer linear programming
Parallelization of Numerical Applications

• **DoAll loop parallelism**
 – Find loops whose iterations are independent
 – Number of iterations typically scales with the problem
 – Usually much larger than the number of processors in a machine
 – Divide up iterations across machines

• **Doacross loop parallelism** and **Loop Transformations** in the next class
Iteration Space

FOR \(i = 0 \) to 5
 FOR \(j = i \) to 7
 ...

- **n-deep loop nests:** \(n \)-dimensional polytope
- **Iterations:** coordinates in the iteration space
- **Assume:** iteration index is incremented in the loop
- **Sequential execution order:** lexicographic order
 - \([0,0], [0,1], ..., [0,6], [0,7], [1,1], ..., [1,6], [1,7], ...

\[\begin{array}{c}
0 \leq i \\
0 \leq j \\
i \leq 5 \\
i \leq j \\
j \leq 7
\end{array} \]
Basic Parallelism

Examples:

FOR i = 1 to 100
 \[A[i] = B[i] + C[i] \]

FOR i = 11 TO 20
 \[a[i] = a[i-1] + 3 \]

FOR i = 11 TO 20
 \[a[i] = a[i-10] + 3 \]

• Does there exist a data dependence edge between two different iterations?
• A data dependence edge is loop-carried if it crosses iteration boundaries
• DoAll loops: loops without loop-carried dependences
Affine Array Accesses

• Common patterns of data accesses: (i, j, k are loop indexes)

 \[A[i,j], A[i-1, j+1] \]

• Domain of data dependence analysis
 - Array indexes are affine expressions of surrounding loop indexes
 • Loop indexes: \(i_n, i_{n-1}, \ldots, i_1 \)
 • Integer constants: \(c_n, c_{n-1}, \ldots, c_0 \)
 • Array index: \(c_n i_n + c_{n-1} i_{n-1} + \ldots + c_1 i_1 + c_0 \)
 • Affine expression: linear expression + a constant term (\(c_0 \))

 - Loop bounds are affine expressions of outer loop indexes

 - Extend indexes to include symbolic constants: variables with constant values inside the loops
II. Recall: Data Dependences

• True dependence:
 \[
 a = a
 \]

• Anti-dependence:
 \[
 a = a
 \]

• Output dependence
 \[
 a = a
 \]
Formulating Data Dependence Analysis

\[\text{FOR } i := 2 \text{ to } 5 \text{ do} \]
\[A[i-2] = A[i]+1; \]

- Between \textbf{read access} \(A[i] \) and \textbf{write access} \(A[i-2] \) there is a dependence if:
 - there exist two iterations \(i_r \) and \(i_w \) within the loop bounds, s.t.
 - iterations \(i_r \) & \(i_w \) read & write the same array element, respectively

\[\exists \text{integers } i_w, i_r \quad 2 \leq i_w, i_r \leq 5 \quad i_r = i_w - 2 \]

- Between \textbf{write access} \(A[i-2] \) and \textbf{write access} \(A[i-2] \) there is a dependence if:

\[\exists \text{integers } i_w, i_v \quad 2 \leq i_w, i_v \leq 5 \quad i_w - 2 = i_v - 2 \]

- To rule out the case when the same instance depends on itself:
 - add constraint \(i_w \neq i_v \)
Memory Disambiguation

is

Undecidable at Compile Time

\text{read}(n)

\text{For } i =

\text{a}[i] = \text{a}[n]
Domain of Data Dependence Analysis

• Only use loop bounds and array indexes that are affine functions of loop variables

for i = 1 to n
 for j = 2i to 100
 a[i+2j+3][4i+2j][i*1] = …
 … = a[1][2i+1][j]

• Assume a data dependence between the read & write operation if:
 – Let a read instance be denoted with indexes \(i_r, j_r \) and
 – a write instance be denoted with indexes \(i_w, j_w \)

\[\exists \text{Integers } i_r, j_r, i_w, j_w, n \]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w \\
n
\end{bmatrix} +
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r \\
n
\end{bmatrix} +
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 2
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w \\
\end{bmatrix} +
\begin{bmatrix}
3 \\
0
\end{bmatrix} =
\begin{bmatrix}
0 & 0 \\
2 & 0
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r \\
\end{bmatrix} +
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\]
Domain of Data Dependence Analysis

- Equate each dimension of array access; ignore non-affine ones
 - No solution \rightarrow No data dependence
 - Solution \rightarrow there may be a dependence
Complexity of Data Dependence Analysis

For every pair of accesses not necessarily distinct \((F_1, f_1)\) and \((F_2, f_2)\) one must be a write operation

Let \(B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0\) be the corresponding loop bound constraints,

\[\exists \text{ integers } i_1, i_2 \quad B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0 \]

\[F_1 i_1 + f_1 = F_2 i_2 + f_2 \]

If the accesses are not distinct, then add the constraint \(i_1 \neq i_2\)

- Equivalent to integer linear programming

\[\exists \text{ integer } i \quad A_1 i \leq \hat{b}_1 \quad A_2 \hat{i} = \hat{b}_2 \]

- Integer linear programming is \(\text{NP-complete}\)
 - \(O(\text{size of the coefficients})\) or \(O(n^n)\)
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • If there is no solution, then there is no integer solution
Fourier-Motzkin Elimination

- To eliminate a variable from a set of linear inequalities.
- To eliminate a variable x_1
 - Rewrite all expressions in terms of lower or upper bounds of x_1
 - Create a transitive constraint for each pair of lower and upper bounds.
- Example: Let L, U be lower bounds and upper bounds resp
 - To eliminate x_1:

\[
\begin{align*}
 L_1(x_2, \ldots, x_n) &\leq x_1 \leq U_1(x_2, \ldots, x_n) \\
 L_2(x_2, \ldots, x_n) &\leq x_1 \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]
Example

FOR $i = 1$ to 5
FOR $j = i+1$ to 5
$A[i,j] = f(A[i,i], A[i-1,j])$

write
\[
1 \leq i \\
i \leq 5 \\
i + 1 \leq j \\
j \leq 5
\]

read
\[
1 \leq i' \\
i' \leq 5 \\
i' + 1 \leq j' \\
j' \leq 5
\]

1: Data dep between $A[i,j]$, $A[i',i']$
\[
i = i' \\
j = i' \\
i' + 1 \leq i'
\]

2: Data dep between $A[i,j]$ and $A[i'-1,j']$
\[
i = i' - 1 \quad \Rightarrow \quad i+1 = i' \\
j = j'
\]
Substituting
\[
1 \leq i + 1, \quad i + 1 \leq 5 \\
i + 2 \leq j, \quad j \leq 5
\]
Combining
\[
1 \leq i; i \leq 4 \quad i \leq j - 2; j \leq 5
\]
Eliminating i:
\[
1 \leq 4; 1 \leq j - 2; j \leq 5 \\
3 \leq j; \quad j \leq 5
\]
Eliminating j:
\[
3 \leq 5
\]
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • Add heuristics to encourage finding an integer solution.
 – Create 2 subproblems if a real, but not integer, solution is found.
 • For example, if \(x = .5 \) is a solution,
 create two problems,
 by adding \(x \leq 0 \) and \(x \geq 1 \) respectively to original constraint.
Relaxing Dependences

Privatization:

- **Scalar**


  ```plaintext
  for i = 1 to n
      t = (A[i] + B[i]) / 2;
      C[i] = t * t;
  ```

- **Array**

  ```plaintext
  for i = 1 to n
      for j = 1 to n
          t[j] = (A[i,j] + B[i,j]) / 2;
      for j = 1 to n
          C[i,j] = t[j] * t[j];
  ```

Reduction:

```plaintext
for i = 1 to n
    sum = sum + A[i];
```
III. Parallelism in Loop Nests

- Matrix Multiplication:

  ```c
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      for (k = 0; k < n; k++) {
        Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
      }
    }
  }
  ```
Degrees of parallelism

- Matrix Multiplication:
  ```c
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      for (k = 0; k < n; k++) {
        Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
      }
    }
  }
  ```
Blocking

\[1000 \times 32 = 32 \times 1000 \]

Data Accessed

\[1002000 \]

\[65024 \]
Experimental Results

Speedup

- With Blocking
- Without Blocking

Processors
Code Transform

• Before

 \[
 \begin{align*}
 &\text{for (i = 0; i < n; i++)} \{ \\
 &\quad \text{for (j = 0; j < n; j++)} \{ \\
 &\quad\quad \text{for (k = 0; k < n; k++)} \{ \\
 &\quad\quad\quad Z[i,j] = Z[i,j] + X[i,k]*Y[k,j]; \\
 &\quad\} \\
 &\} \\
 &\}
 \end{align*}
 \]

• After

 \[
 \begin{align*}
 &\text{for (ii = 0; ii < n; ii = ii+B) } \{ \\
 &\quad \text{for (jj = 0; jj < n; jj = jj+B) } \{ \\
 &\quad\quad \text{for (kk = 0; kk < n; kk = kk+B) } \{ \\
 &\quad\quad\quad \text{for (i = ii; i < min(n,kk+B); i++) } \{ \\
 &\quad\quad\quad\quad \text{for (j = jj; j < min(n,kk+B); j++) } \{ \\
 &\quad\quad\quad\quad\quad \text{for (k = kk; k < min(n,kk+B); k++) } \{ \\
 &\quad\quad\quad\quad\quad\quad Z[i,j] = Z[i,j] + X[i,k] * Y[k,j]; \\
 &\quad\quad\quad\quad\} \\
 &\quad\}\}
 &\}
 &\}
 &\}
 \end{align*}
 \]
SIMD: Innermost Parallelism

- **Before**
  ```c
  for (ii = 0; ii < n; ii += B) {
    for (jj = 0; jj < n; jj += B) {
      for (kk = 0; kk < n; kk += B) {
        for (i = ii; i < min(n, ii+B); i++) {
          for (j = jj; j < min(n, jj+B); j++) {
            for (k = kk; k < min(n, kk+B); k++) {
              Z[i,j] = Z[i,j] + X[i,k] * Y[k,j];
            }
          }
        }
      }
    }
  }
  ```

- **After**
  ```c
  for (ii = 0; ii < n; ii += B) {
    for (jj = 0; jj < n; jj += B) {
      for (kk = 0; kk < n; kk += B) {
        for (i = ii; i < min(n, ii+B); i++) {
          for (j = jj; j < min(n, jj+B); j++) {
            for (k = kk; k < min(n, kk+B); k++) {
              for (j' = j < min(n, j'+B); j'+++) {
                Z[i,j'] = Z[i,j'] + X[i,k] * Y[k,j'];
              }
            }
          }
        }
      }
    }
  }
  ```
Observations

- Outer loop is more coarse-grain
 - Less barrier overhead, less interprocessor communication

- Any parallel loop can be blocked and moved to an inner loop
 - Transformations will be explained in the next class

- Blocking is useful for uniprocessors and multiprocessors
 - Minimize interprocessor communication
 - Minimize cache misses
 - Applicable to entire memory hierarchy: virtual memory, registers
 - Tiny blocks to reuse registers and minimize memory fetches
Canonical Form

• Nests of outermost maximum degrees of parallelism
 – Outer loop parallelism can always be made inner loop parallelism
 – Machine independent
 – Transformations can increase outermost maximum degrees of parallelism (next class)
A High-Level Strategy

• Multiprocessors: Find the outermost maximum degrees of parallelism
 – Assign multi-dimensional blocks to processors
 – To minimize barrier and processor communication overhead

• Further block for caches and registers

• For SIMD operations
 – Block/Stripmine a parallel loop to create an innermost loop that reads data contiguously
IV. Whole Numerical Applications

- Amdahl’s Law

- Kernels
 - A small number of tight loops with large data set sizes
 - Extremely important to optimize for locality

- Across kernels:
 - Important when
 - Kernel parallelism does not dominate the computation
 - Or kernel parallelism cannot occupy the whole machine
 - Two techniques
 - Interprocedural analysis of sequential programs
 - Parallel execution of a high-level data flow graph (TensorFlow)
Interprocedural Parallelization

- Interprocedural symbolic analysis
 - Find interprocedural array indexes which are affine expressions of outer loop indices

- Interprocedural parallelization analysis
 - Data dependence based on summaries of array regions accessed
 - If the regions do not intersect, there is no parallelism
 - Find privatizable scalar variables and arrays
 - Find scalar and array reductions
An Example
Conclusions

• Basic parallelization
 – Doall loop: loops with no loop-carried data dependences
 – Data dependence for affine loop indexes = integer linear programming

• Locality is important for uniprocessors and multiprocessors

• Canonical form: Nests of outermost coarse-grain parallelism
 – Transform the code according to machine characteristics

• Interprocedural analysis is useful for affine indices
 – Ask users for help on unresolved dependences