Lecture 6
Register Allocation

I. Introduction

II. Abstraction and the Problem

III. Algorithm

Reading: Chapter 8.8.4
Before next class: Chapter 10.1 - 10.2
I. Motivation

• **Problem**
 – Allocation of variables (pseudo-registers) to hardware registers in a procedure

• **Perhaps the most important optimization**
 – Directly reduces running time
 • (memory access \rightarrow register access)
 – Useful for other optimizations
 • e.g. cse assumes old values are kept in registers.
Goal

- Find an assignment for all pseudo-registers, if possible.
 - Not trying to minimize the number of registers
- If there are not enough registers in the machine, choose registers to spill to memory
Example

A = ...
IF A goto L1

B = ...
 = A
D =
 = B + D

L1: C = ...
 = A
D =
 = C + D
II. An Abstraction for Allocation & Assignment

• Intuitively
 – Two pseudo-registers interfere if at some point in the program they cannot both occupy the same register.

• Interference graph: an undirected graph, where
 – nodes = pseudo-registers
 – there is an edge between two nodes if their corresponding pseudo-registers interfere

• What is not represented
 – The extent of the interference between uses of different variables
 – Where in the program is the interference
Register Allocation and Coloring

• A graph is \textit{n-colorable} if:
 – every node in the graph can be colored with one of the \textit{n} colors such that two adjacent nodes do not have the same color.

• Assigning \textit{n} register (without spilling) = Coloring with \textit{n} colors
 – assign a node to a register (color) such that no two adjacent nodes are assigned same registers(colors)

• Is spilling necessary? = Is the graph \textit{n-colorable}?

• To determine if a graph is \textit{n-colorable} is \textit{NP}-complete, for \textit{n}>2
 • Too expensive
 • Heuristics
Quick Notes on NP-Completeness

• **NP = P?**
 – P: Polynomial
 – NP: Non-deterministic Polynomial
 • Exponential time on deterministic machines
 – One of the most researched problem in theory

• NP-complete problems
 – If any can be solved in polynomial time, then NP = P

• Proving a problem is NP-complete → License to use heuristics
III. Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring
 – use heuristics to try to find an n-coloring
 • Success:
 – colorable and we have an assignment
 • Failure:
 – graph not colorable, or
 – graph is colorable, but it is too expensive to color
Step 1a. Nodes in an Interference Graph

\[A = \ldots \]
\[\text{IF } A \text{ goto L1} \]

\[B = \ldots \]
\[= A \]
\[D = \]
\[= B + D \]

\[L1: C = \ldots \]
\[= A \]
\[D = \]
\[= D + C \]

\[A = 2 \]

\[= A \]
Step 1a. Nodes in an Interference Graph

\[\begin{align*}
A &= \ldots \\
&\text{IF } A \text{ goto L1}
\end{align*}\]

\[\begin{align*}
B &= \ldots \\
&= A \\
D &= \\
&= B + D
\end{align*}\]

\[\begin{align*}
L1: C &= \ldots \\
&= A \\
D &= \\
&= D + C
\end{align*}\]

\[\begin{align*}
A &= 2 \\
&= D
\end{align*}\]

\[\begin{align*}
&= A
\end{align*}\]
Live Ranges and Merged Live Ranges

- **Motivation:** to create an interference graph that is easier to color
 - Eliminate interference in a variable’s “dead” zones.
 - Increase flexibility in allocation:
 - can allocate same variable to different registers

- A **live range** consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
 - How to compute a live range?

- Two overlapping live ranges for the **same** variable must be merged
Example (Revisited)

IF A goto L1

B = ...
D = (D_2)
= B + D

L1: C = ...
D = (D_1)
= D + C

A = ...
(A_1)

(A_2)

{} {A_2, B, C, D_1, D_2}

{} {A_2, B, C, D_1, D_2}

(Does not use A, B, C, or D.)

liveness reaching-def

{} {}
{A} {A_1}
{A} {A_1}
{A} {A_1}
{A,C} {A_1, C}
{C} {A_1, C}
{C, D} {A_1, C, D_1}
{D} {A_1, C, D_1}
Merging Live Ranges

- **Merging definitions into equivalence classes**
 - Start by putting each definition in a different equivalence class
 - For each point in a program:
 - if (i) variable is live, and (ii) there are multiple reaching definitions for the variable, then:
 - merge the equivalence classes of all such definitions into one equivalence class

- **From now on, refer to merged live ranges simply as live ranges**

Given:

\[A_1 \text{ overlaps with } A_2 \]
\[A_3 \text{ overlaps with } A_4 \]
\[A_1 \text{ overlaps with } A_3 \]
Step 1b. Edges of Interference Graph

• Intuitively:
 – Two live ranges (necessarily of different variables) may interfere if they overlap at some point in the program.
 – Algorithm:
 • At each point in the program:
 – enter an edge for every pair of live ranges at that point.

• An optimized definition & algorithm for edges:
 – Algorithm:
 • check for interference only at the starts of each merged live range
 – Faster
 – Better quality
Example 2

Watch out for corner cases!
Step 2. Coloring

• Reminder: coloring for $n > 2$ is NP-complete

• **Observations:**
 – a node with degree $< n \Rightarrow$
 • can always color it successfully, given its neighbors’ colors
 – a node with degree $= n \Rightarrow$
 – a node with degree $> n \Rightarrow$
Coloring Algorithm

- **Algorithm:**
 - Iterate until stuck or done
 - Pick any node with degree < n
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - reverse process and add colors
- **Example (n = 3):**

```
B
/ \  \
E   A   C
   \ /   \
    D    
```

- **Note:** degree of a node may drop in iteration
- **Avoids making arbitrary decisions that make coloring fail**
What Does Coloring Accomplish?

- **Done:**
 - colorable, also obtained an assignment
- **Stuck:**
 - colorable or not?
What if Coloring Fails?

• Use heuristics to improve its chance of success and to spill code

Build interference graph

Iterative until there are no nodes left
 If there exists a node v with less than n neighbors
 place v on stack to register allocate
 else
 $v =$ node chosen by heuristics
 (least frequently executed, has many neighbors)
 place v on stack to register allocate (mark as spilled)
 remove v and its edges from graph

While stack is not empty
 Remove v from stack
 Reinsert v and its edges into the graph
 Assign v a color that differs from all its neighbors
 (guaranteed to be possible only for nodes not marked as spilled)
Summary

• **Problems:**
 – Given n registers in a machine, is spilling avoided?
 – Find an assignment for all pseudo-registers, whenever possible.

• **Solution:**
 – *Abstraction*: an interference graph
 • nodes: live ranges
 • edges: presence of live range at time of definition
 – *Register Allocation and Assignment* problems
 • equivalent to *n-colorability* of interference graph
 ➔ NP-complete
 – *Heuristics* to find an assignment for n colors
 • successful: colorable, and finds assignment
 • not successful: colorability unknown & no assignment

• **General lessons:**
 – Minimize making arbitrary decisions in heuristics
 – Careful about corner cases