Lecture 6
Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

Reading: Chapter 8.8.4
Before next class: Chapter 10.1 - 10.2
I. Motivation

• **Problem**
 – Allocation of variables (pseudo-registers) to hardware registers in a procedure

• **Perhaps the most important optimization**
 – Directly reduces running time
 • (memory access \(\rightarrow\) register access)
 – Useful for other optimizations
 • e.g. cse assumes old values are kept in registers.
Goal

- Find an assignment for all pseudo-registers, if possible.
- If there are not enough registers in the machine, choose registers to spill to memory.
Example

A = ...
IF A goto L1

B = ...
 = A
D =
 = B + D

L1: C = ...
 = A
D =
 = C + D
II. An Abstraction for Allocation & Assignment

• **Intuitively**
 - Two pseudo-registers *interfere* if at some point in the program they cannot both occupy the same register.

• **Interference graph**: an undirected graph, where
 - nodes = pseudo-registers
 - there is an edge between two nodes if their corresponding pseudo-registers interfere

• **What is not represented**
 - Extent of the interference between uses of different variables
 - Where in the program is the interference
Register Allocation and Coloring

• A graph is \textit{n-colorable} if:
 – every node in the graph can be colored with one of the \(n \) colors such that two adjacent nodes do not have the same color.

• \textit{Assigning n register (without spilling)} = \textit{Coloring with n colors}
 – assign a node to a register (color) such that no two adjacent nodes are assigned same registers(colors)

• \textit{Is spilling necessary?} = Is the graph \(n \)-colorable?

• \textit{To determine if a graph is} \(n \)-\textit{colorable is NP-complete, for} \(n>2 \)
 • Too expensive
 • Heuristics
III. Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring
 – use heuristics to try to find an n-coloring
 • Success:
 – colorable and we have an assignment
 • Failure:
 – graph not colorable, or
 – graph is colorable, but it is too expensive to color
Step 1a. Nodes in an Interference Graph

A = ...
IF A goto L1

B = ...
 = A
D =
 = B + D

L1: C = ...
 = A
D =
 = D + C

A = 2

= A
Live Ranges and Merged Live Ranges

- **Motivation**: to create an interference graph that is easier to color
 - Eliminate interference in a variable’s “dead” zones.
 - Increase flexibility in allocation:
 - can allocate same variable to different registers

- A **live range** consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
 - How to compute a live range?

- Two overlapping live ranges for the **same** variable must be merged

```
a = ...

... = a

a = ...
```
Example (Revisited)

\[
\begin{align*}
A &= \ldots \quad (A_1) \\
\text{IF } A &\text{ goto L1}
\end{align*}
\]

\[
\begin{align*}
B &= \ldots \\
&= A \\
D &= (D_2) \\
&= B + D
\end{align*}
\]

\[
\begin{align*}
L1: C &= \ldots \\
&= A \\
D &= (D_1) \\
&= D + C
\end{align*}
\]

\[
\begin{align*}
A &= \quad (A_2) \\
&= D
\end{align*}
\]

\[
\begin{align*}
\{A\} &\rightarrow \{A_1\} \\
\{A,B\} &\rightarrow \{A_1,B\} \\
\{B\} &\rightarrow \{A_1,B\} \\
\{B,D\} &\rightarrow \{A_1,B,D_2\} \\
\{D\} &\rightarrow \{A_1,B,D_2\}
\end{align*}
\]

\[
\begin{align*}
\{A\} &\rightarrow \{A_1\} \\
\{A,C\} &\rightarrow \{A_1,C\} \\
\{C\} &\rightarrow \{A_1,C\} \\
\{C,D\} &\rightarrow \{A_1,C,D_1\} \\
\{D\} &\rightarrow \{A_1,C,D_1\}
\end{align*}
\]

\[
\begin{align*}
\{D\} &\rightarrow \{A_1,B,C,D_1,D_2\} \\
\{A,D\} &\rightarrow \{A_2,B,C,D_1,D_2\} \\
\{A\} &\rightarrow \{A_2,B,C,D_1,D_2\}
\end{align*}
\]

\[
\begin{align*}
\{A\} &\rightarrow \{A_2,B,C,D_1,D_2\}
\end{align*}
\]

(Does not use A, B, C, or D.)
Merging Live Ranges

- **Merging definitions into equivalence classes**
 - Start by putting each definition in a different equivalence class
 - For each point in a program:
 - if (i) variable is live, and (ii) there are multiple reaching definitions for the variable, then:
 - merge the equivalence classes of all such definitions into one equivalence class

- From now on, refer to merged live ranges simply as live ranges
Step 1b. Edges of Interference Graph

• Intuitively:
 – Two live ranges (necessarily of different variables) may interfere if they overlap at some point in the program.
 – Algorithm:
 • At each point in the program:
 – enter an edge for every pair of live ranges at that point.

• An optimized definition & algorithm for edges:
 – Algorithm:
 • check for interference only at the starts of each merged live range
 – Faster
 – Better quality
Example 2

![Diagram](image)

1. IF Q goto L1
 - A = ...
 - L1: B = ...

2. IF Q goto L2
 - ... = A
 - L2: ... = B
Step 2. Coloring

- Reminder: coloring for $n > 2$ is NP-complete

- **Observations:**
 - a node with degree $< n \Rightarrow$
 - can always color it successfully, given its neighbors’ colors
 - a node with degree $= n \Rightarrow$
 - a node with degree $> n \Rightarrow$
Coloring Algorithm

- **Algorithm:**
 - Iterate until stuck or done
 - Pick any node with degree \(< n\)
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - reverse process and add colors
- **Example** \((n = 3)\):

```
B
/ \  \
E---A---C
/ \\
D
```

- **Note:** degree of a node may drop in iteration
- **Avoids making arbitrary decisions that make coloring fail**
What Does Coloring Accomplish?

- **Done:**
 - colorable, also obtained an assignment
- **Stuck:**
 - colorable or not?

```
+---+---+---+
| B | A | C |
+---+---+---+
| E |   | D |
```

What if Coloring Fails?

• Use heuristics to improve its chance of success and to spill code

Build interference graph

Iterative until there are no nodes left
 If there exists a node v with less than n neighbors
 place v on stack to register allocate
 else
 $v =$ node chosen by heuristics
 (least frequently executed, has many neighbors)
 place v on stack to register allocate (mark as spilled)
 remove v and its edges from graph

While stack is not empty
 Remove v from stack
 Reinsert v and its edges into the graph
 Assign v a color that differs from all its neighbors
 (guaranteed to be possible for nodes not marked as spilled)
Summary

• Problems:
 – Given n registers in a machine, is spilling avoided?
 – Find an assignment for all pseudo-registers, whenever possible.

• Solution:
 – Abstraction: an interference graph
 • nodes: live ranges
 • edges: presence of live range at time of definition
 – Register Allocation and Assignment problems
 • equivalent to n-colorability of interference graph
 ➔ NP-complete
 – Heuristics to find an assignment for n colors
 • successful: colorable, and finds assignment
 • not successful: colorability unknown & no assignment