I. Motivation

- Problem
 - Allocation of variables (pseudo-registers) to hardware registers in a procedure

- Perhaps the most important optimization
 - Directly reduces running time
 - (memory access → register access)
 - Useful for other optimizations
 - e.g. cse assumes old values are kept in registers.
Goal

- Find an assignment for all pseudo-registers, if possible.
- If there are not enough registers in the machine, choose registers to spill to memory

Example

```
A = ...
IF A goto L1
B = ...
  = A
D = ...
  = B + D
L1: C = ...
  = A
  = D
  = C + D
```
II. An Abstraction for Allocation & Assignment

- **Intuitively**
 - Two pseudo-registers *interfere* if at some point in the program they cannot both occupy the same register.

- **Interference graph**: an undirected graph, where
 - nodes = pseudo-registers
 - there is an edge between two nodes if their corresponding pseudo-registers interfere

- **What is not represented**
 - Extent of the interference between uses of different variables
 - Where in the program is the interference

Register Allocation and Coloring

- A graph is **n-colorable** if:
 - every node in the graph can be colored with one of the n colors such that two adjacent nodes do not have the same color.

- **Assigning n register (without spilling) = Coloring with n colors**
 - assign a node to a register (color) such that no two adjacent nodes are assigned same registers(colors)

- **Is spilling necessary? = Is the graph n-colorable?**

- **To determine if a graph is n-colorable is NP-complete, for n>2**
 - Too expensive
 - Heuristics
III. Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring
 – use heuristics to try to find an n-coloring
 • Success:
 – colorable and we have an assignment
 • Failure:
 – graph not colorable, or
 – graph is colorable, but it is too expensive to color

Step 1a. Nodes in an Interference Graph

\[
\begin{align*}
A &= \ldots \\
&\text{IF } A \text{ goto } L1 \\
B &= \ldots \\
&= A \\
D &= \\
&= B + D \\
L1: C &= \ldots \\
&= A \\
D &= \\
&= D + C \\
A &= 2
\end{align*}
\]
Live Ranges and Merged Live Ranges

- Motivation: to create an interference graph that is easier to color
 - Eliminate interference in a variable’s “dead” zones.
 - Increase flexibility in allocation:
 • can allocate same variable to different registers

- A live range consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
 - How to compute a live range?

- Two overlapping live ranges for the same variable must be merged

Example (Revisited)

(Does not use A, B, C, or D.)
Merging Live Ranges

- **Merging definitions into equivalence classes**
 - Start by putting each definition in a different equivalence class
 - For each point in a program:
 - if (i) variable is live, and (ii) there are multiple reaching definitions for
 the variable, then:
 - merge the equivalence classes of all such definitions into one
 equivalence class

- From now on, refer to merged live ranges simply as live ranges

Step 1b. Edges of Interference Graph

- Intuitively:
 - Two live ranges (necessarily of different variables) may interfere
 if they overlap at some point in the program.
 - Algorithm:
 - At each point in the program:
 - enter an edge for every pair of live ranges at that point.

- An optimized definition & algorithm for edges:
 - Algorithm:
 - check for interference only at the start of each live range
 - Faster
 - Better quality
Example 2

IF Q goto L1

A = ...

L1: B = ...

IF Q goto L2

... = A

L2: ... = B

Step 2. Coloring

• Reminder: coloring for \(n > 2 \) is NP-complete

• Observations:
 – a node with degree \(< n\) \(\Rightarrow\)
 • can always color it successfully, given its neighbors’ colors

 – a node with degree \(= n\) \(\Rightarrow\)

 – a node with degree \(> n\) \(\Rightarrow\)
Coloring Algorithm

- **Algorithm:**
 - Iterate until stuck or done
 - Pick any node with degree < n
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - reverse process and add colors
- **Example (n = 3):**

\[\begin{array}{c}
\text{B} \\
\text{E} & \text{A} & \text{C} \\
\text{D} \\
\end{array} \]

- Note: degree of a node may drop in iteration
- Avoids making arbitrary decisions that make coloring fail

What Does Coloring Accomplish?

- **Done:**
 - colorable, also obtained an assignment
- **Stuck:**
 - colorable or not?
What if Coloring Fails?

- Use heuristics to improve its chance of success and to spill code

Build interference graph

Iterative until there are no nodes left
 - If there exists a node v with less than n neighbors
 - place v on stack to register allocate
 - else
 - v = node chosen by heuristics
 - (least frequently executed, has many neighbors)
 - place v on stack to register allocate (mark as spilled)
 - remove v and its edges from graph

While stack is not empty
 - Remove v from stack
 - Reinsert v and its edges into the graph
 - Assign v a color that differs from all its neighbors
 - (guaranteed to be possible for nodes not marked as spilled)

Summary

- Problems:
 - Given n registers in a machine, is spilling avoided?
 - Find an assignment for all pseudo-registers, whenever possible.
- Solution:
 - Abstraction: an interference graph
 - nodes: live ranges
 - edges: presence of live range at time of definition
 - Register Allocation and Assignment problems
 - equivalent to n-colorability of interference graph
 - \Rightarrow NP-complete
 - Heuristics to find an assignment for n colors
 - successful: colorable, and finds assignment
 - not successful: colorability unknown & no assignment