Lecture 6
Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

Reading: Chapter 8.8.4
Before next class: Chapter 10.1 - 10.2

I. Motivation

• Problem
 − Allocation of variables (pseudo-registers) to hardware registers in a procedure

• Perhaps the most important optimization
 − Directly reduces running time
 • (memory access \rightarrow register access)
 − Useful for other optimizations
 • e.g. cse assumes old values are kept in registers.
Goal

- Find an assignment for all pseudo-registers, if possible.
- If there are not enough registers in the machine, choose registers to spill to memory.

Example

\[
\begin{align*}
B &= \ldots \\
&= A \\
D &= B + D \\
L1: C &= \ldots \\
&= A \\
&= C + D
\end{align*}
\]

A = \ldots \\
IF A goto L1

B = \ldots \\
= A \\
D = B + D \\
L1: C = \ldots \\
= A \\
= C + D
II. An Abstraction for Allocation & Assignment

- Intuitively
 - Two pseudo-registers interfere if at some point in the program they cannot both occupy the same register.

- Interference graph: an undirected graph, where
 - nodes = pseudo-registers
 - there is an edge between two nodes if their corresponding pseudo-registers interfere

- What is not represented
 - Extent of the interference between uses of different variables
 - Where in the program is the interference

Register Allocation and Coloring

- A graph is n-colorable if:
 - every node in the graph can be colored with one of the n colors such that two adjacent nodes do not have the same color.

- Assigning n register (without spilling) = Coloring with n colors
 - assign a node to a register (color) such that no two adjacent nodes are assigned same registers(colors)

- Is spilling necessary? = Is the graph n-colorable?

- To determine if a graph is n-colorable is NP-complete, for n>2
 - Too expensive
 - Heuristics
III. Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring
 - use heuristics to try to find an n-coloring
 • Success:
 - colorable and we have an assignment
 • Failure:
 - graph not colorable, or
 - graph is colorable, but it is too expensive to color

Step 1a. Nodes in an Interference Graph
Live Ranges and Merged Live Ranges

- **Motivation:** to create an interference graph that is easier to color
 - Eliminate interference in a variable’s “dead” zones.
 - Increase flexibility in allocation:
 - can allocate same variable to different registers

- A **live range** consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
 - How to compute a live range?

- Two overlapping live ranges for the same variable must be merged

Example (Revisited)

```
L1: C = ...
D = (D1)
   = D + C

B = ...
   = A
   = D
   = B + D

A = ...
   = D

A = ...

IF A goto L1
```

- **liveness**
 - reaching-def

```
{}                {}                {}
{A}               {A1}              {A2}
{A1}              {A1}              {A1}
{A,B}             {A1,B}            {A1,C}
{B}               {A1,B}            {A1,C}
{B,D}             {A1,B,D2}         {A1,C,D1}
{D}               {A1,B,D2}         {A1,C,D1}

{A2,B,C,D1,D2}    {A2,B,C,D1,D2}   {A2,B,C,D1,D2}

{}                {A2,B,C,D1,D2}   {A2,B,C,D1,D2}

(Does not use A, B, C, or D.)
```
Merging Live Ranges

• **Merging definitions into equivalence classes**
 – Start by putting each definition in a different equivalence class
 – For each point in a program:
 • if (i) variable is live, and (ii) there are multiple reaching definitions for
 the variable, then:
 – merge the equivalence classes of all such definitions into one
 equivalence class

• From now on, refer to merged live ranges simply as live ranges

Step 1b. Edges of Interference Graph

• **Intuitively:**
 – Two live ranges (necessarily of different variables) may interfere
 if they overlap at some point in the program.
 – Algorithm:
 • At each point in the program:
 – enter an edge for every pair of live ranges at that point.

• **An optimized definition & algorithm for edges:**
 – Algorithm:
 • check for interference only at the starts of each merged live range
 – Faster
 – Better quality
Example 2

Step 2. Coloring

- **Reminder**: coloring for \(n > 2 \) is NP-complete

- **Observations**:
 - a node with degree \(< n\) ⇒
 - can always color it successfully, given its neighbors' colors
 - a node with degree \(= n\) ⇒
 - a node with degree \(> n\) ⇒
Coloring Algorithm

- **Algorithm:**
 - Iterate until stuck or done
 - Pick any node with degree < \(n \)
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - reverse process and add colors
- **Example (\(n = 3 \)):**

```
 B
/ \
E  A--C
| \
D  
```

- Note: degree of a node may drop in iteration
- Avoids making arbitrary decisions that make coloring fail

What Does Coloring Accomplish?

- **Done:**
 - colorable, also obtained an assignment
- **Stuck:**
 - colorable or not?
What if Coloring Fails?

- Use heuristics to improve its chance of success and to spill code

Build interference graph

Iterative until there are no nodes left
 - If there exists a node v with less than n neighbor
 place v on stack to register allocate
 - else
 - v = node chosen by heuristics
 (least frequently executed, has many neighbors)
 place v on stack to register allocate (mark as spilled)
 remove v and its edges from graph

While stack is not empty
 - Remove v from stack
 - Reinsert v and its edges into the graph
 - Assign v a color that differs from all its neighbors
 (guaranteed to be possible for nodes not marked as spilled)

Summary

- Problems:
 - Given n registers in a machine, is spilling avoided?
 - Find an assignment for all pseudo-registers, whenever possible.

- Solution:
 - Abstraction: an interference graph
 - nodes: live ranges
 - edges: presence of live range at time of definition
 - Register Allocation and Assignment problems
 - equivalent to n-colorability of interference graph
 \(\rightarrow \) NP-complete
 - Heuristics to find an assignment for n colors
 - successful: colorable, and finds assignment
 - not successful: colorability unknown & no assignment