Lecture 5

Partial Redundancy Elimination

I. Forms of redundancy
 • global common subexpression elimination
 • loop invariant code motion
 • partial redundancy

II. Lazy Code Motion Algorithm
 • Mathematical concept: a cut set
 • Basic technique (anticipation)
 • 3 more passes to refine algorithm

Reading: Chapter 9.5
Overview

• Eliminates many forms of redundancy in one fell swoop

• Originally formulated as 1 bi-directional analysis

• Lazy code motion algorithm
 – formulated as 4 separate uni-directional passes
 • backward, forward, forward, backward
I. Common Subexpression Elimination

Build up intuition about redundancy elimination with examples of familiar concepts

- A common expression may have different values on different paths!
- On every path reaching p,
 - expression $b+c$ has been computed
 - b, c not overwritten after the expression
Loop Invariant Code Motion

- Given an expression \((b+c)\) inside a loop,
 - does the value of \(b+c\) change inside the loop?
 - is the code executed at least once?
Partial Redundancy

- Can we place calculations of \(b+c \) such that no path re-executes the same expression

- Partial Redundancy Elimination (PRE)
 - subsumes:
 - global common subexpression (full redundancy)
 - loop invariant code motion (partial redundancy for loops)

Unifying theory: More powerful, elegant \(\rightarrow \) but less direct.
II. Preparing the Flow Graph

- **Key observation**
 - Can replace a bi-directional (!) data flow with several unidirectional data flows \(\rightarrow \) much easier
 - Better result as well!

\[
\begin{align*}
& a = b + c \\
& d = b + c \\
& a = b + c \\
& d = b + c
\end{align*}
\]

- **Definition: Critical edges**
 - source basic block has multiple successors
 - destination basic block has multiple predecessors

- **Modify the flow graph:** (treat every statement as a basic block)
 - To keep algorithm simple: restrict placement of instructions to the beginning of a basic block
 - Add a basic block for every edge that leads to a basic block with multiple predecessors (not just on critical edges)
Full Redundancy: A Cut Set in a Graph

Key mathematical concept

- Full redundancy at p: expression $a+b$ redundant on all paths
 - a cut set: nodes that separate entry from p
 - a cut set contains calculation of $a+b$
 - a, b, not redefined
Partial Redundancy: Completing a Cut Set

- Partial redundancy at p: redundant on some but not all paths
 - Add operations to create a cut set containing a+b
 - Note: Moving operations up can eliminate redundancy
- Constraint on placement: no wasted operation
 - a+b is “anticipated” at B if its value computed at B will be used along ALL subsequent paths
 - a, b not redefined, no branches that lead to exit with out use
- Range where a+b is anticipated → Choice
Pass 1: Anticipated Expressions
This pass does most of the heavy lifting in eliminating redundancy

- **Backward pass: Anticipated expressions**
 Anticipated[b].in: Set of expressions anticipated at the entry of b
 - An expression is anticipated if its value computed at point p will be used along ALL subsequent paths

<table>
<thead>
<tr>
<th>Domain</th>
<th>Anticipated Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>backward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>$f_b(x) = \text{EUse}_b \cup (x \cdot \text{EKil}_b)$</td>
</tr>
<tr>
<td></td>
<td>EUse: used exp, EKil: exp killed</td>
</tr>
<tr>
<td>\land</td>
<td>\cap</td>
</tr>
<tr>
<td>Boundary</td>
<td>$\text{in}[\text{exit}] = \emptyset$</td>
</tr>
<tr>
<td>Initialization</td>
<td>$\text{in}[b] = {\text{all expressions}}$</td>
</tr>
</tbody>
</table>

- **First approximation:**
 - place operations at the frontier of anticipation
 (boundary between not anticipated and anticipated)
Examples (1)
See the algorithm in action

\[x = a + b \]
\[z = a + b \]
\[y = a + b \]
\[r = a + b \]
\[a = 10 \]
Examples (2)

- Cannot eliminate all redundancy
Examples (3)

Do you know how the algorithm works without simulating it?

\[x = a + b \]
\[y = a + b \]
Pass 2: Place As Early As Possible

There is still some redundancy left!

- First approximation: frontier between “not anticipated” & “anticipated”
- Complication: Anticipation may oscillate

```
  a = 1
    ↓
  x = a+b
  ↓
  y = a+b
```

- An anticipation frontier may cover a subsequent frontier.
- Once an expression has been anticipated,
 it is “available” to subsequent frontiers
 \(\rightarrow \) no need to re-evaluate.
- \(e \) will be available at \(p \) if
 \(e \) has been “anticipated but not subsequently killed” on all paths reaching \(p \)
Available Expressions

- \(e \) will be available at \(p \) if
 \(e \) has been “anticipated but not subsequently killed” on all paths reaching \(p \)

<table>
<thead>
<tr>
<th>Available Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Direction</td>
</tr>
<tr>
<td>Transfer Function</td>
</tr>
<tr>
<td>(\land)</td>
</tr>
<tr>
<td>Boundary</td>
</tr>
<tr>
<td>Initialization</td>
</tr>
</tbody>
</table>
Early Placement

- **earliest(b)**
 - set of expressions added to block \(b \) under early placement

- **Place expression at the earliest point anticipated and not already available**
 - \(\text{earliest}(b) = \text{anticipated}[b].\text{in} - \text{available}[b].\text{in} \)

- **Algorithm**
 - For all basic block \(b \),
 - if \(x+y \in \text{earliest}[b] \)
 - at beginning of \(b \):
 - create a new variable \(t \)
 - \(t = x+y \),
 - replace every original \(x+y \) by \(t \)
Pass 3: Lazy Code Motion

Let's be lazy without introducing redundancy.

Delay without creating redundancy to reduce register pressure

An expression e is postponable at a program point p if

- all paths leading to p
 have seen the earliest placement of e but not a subsequent use

<table>
<thead>
<tr>
<th>Postponable Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Direction</td>
</tr>
<tr>
<td>Transfer Function</td>
</tr>
<tr>
<td>\wedge</td>
</tr>
<tr>
<td>Boundary</td>
</tr>
<tr>
<td>Initialization</td>
</tr>
</tbody>
</table>
Latest: frontier at the end of “postponable” cut set

- \(\text{latest}[b] = (\text{earliest}[b] \cup \text{postponable.in}[b]) \cap (\text{EUse}_b \cup \neg (\bigcap_{s \in \text{succ}[b]} (\text{earliest}[s] \cup \text{postponable.in}[s]))) \)
 - OK to place expression: earliest or postponable
 - Need to place at \(b \) if either
 - used in \(b \), or
 - not OK to place in one of its successors
 - Works because of pre-processing step (an empty block was introduced to an edge if the destination has multiple predecessors)
 - if \(b \) has a successor that cannot accept postponement, \(b \) has only one successor
 - The following does not exist:
Pass 4: Cleaning Up

Finally... this is easy, it is like liveness

- Eliminate temporary variable assignments unused beyond current block
- Compute: \texttt{Used.out[b]}: sets of used (live) expressions at exit of \texttt{b}.

\[
x = a + b
\]
not used afterwards

<table>
<thead>
<tr>
<th></th>
<th>Used Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of expressions</td>
</tr>
<tr>
<td>Direction</td>
<td>backward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = (EUse[b] \cup x) - \text{latest}[b])</td>
</tr>
<tr>
<td>&</td>
<td>(\cup)</td>
</tr>
<tr>
<td>Boundary</td>
<td>\text{in}[exit] = \emptyset</td>
</tr>
<tr>
<td>Initialization</td>
<td>\text{in}[b] = \emptyset</td>
</tr>
</tbody>
</table>
Code Transformation

Original version: For each basic block \(b \),
 if \(x+y \in \text{earliest}[b] \)
 at beginning of \(b \):
 create a new variable \(t \)
 \(t = x+y \),
 replace every original \(x+y \) by \(t \)

New version: For each basic block \(b \),
 if \((x+y) \in (\text{latest}[b] \cap \neg \text{used.out}[b]) \) { }
 else
 if \(x+y \in \text{latest}[b] \)
 at beginning of \(b \):
 create a new variable \(t \)
 \(t = x+y \),
 replace every original \(x+y \) by \(t \)
4 Passes for Partial Redundancy Elimination

- **Heavy lifting**: Cannot introduce operations not executed originally
 - Pass 1 (backward): **Anticipation**: range of code motion
 - Placing operations at the frontier of anticipation gets most of the redundancy
- **Squeezing the last drop of redundancy**: An anticipation frontier may cover a subsequent frontier
 - Pass 2 (forward): **Availability**
 - **Earliest**: anticipated, but not yet available
- **Push the cut set out -- as late as possible**
 To minimize register lifetimes
 - Pass 3 (forward): **Postponability**: move it down provided it does not create redundancy
 - **Latest**: where it is used or the frontier of postponability
- **Cleaning up**
 - Pass 4: **Remove temporary assignment**
Remarks

• Powerful algorithm
 – Finds many forms of redundancy in one unified framework

• Illustrates the power of data flow
 – Multiple data flow problems