Lecture 5
Partial Redundancy Elimination

I. Forms of redundancy
 • global common subexpression elimination
 • loop invariant code motion
 • partial redundancy

II. Lazy Code Motion Algorithm
 • Mathematical concept: a cut set
 • Basic technique (anticipation)
 • 3 more passes to refine algorithm

Reading: Chapter 9.5

Overview

• Many forms of redundancy
 – Global common subexpression elimination
 – Loop invariant code motion
 – Partial redundancy
• Unified as one algorithm! (1-bidirectional data flow analysis)
• Lazy code motion algorithm
 – formulated as 4 separate uni-directional passes
 • backward, forward, forward, backward
• Shows off the power and elegance of data flow
• Plan
 – Simple examples to build up intuition
 – Introduce mathematical concept: cut sets
 – Key: understand what the algorithm does without simulation
 – Details of the algorithm
• Simple but hard: Work out examples after class immediately
I. Common Subexpression Elimination

Build up intuition about redundancy elimination with examples of familiar concepts

- A common expression may have different values on different paths!
- On every path reaching p,
 - expression \(b+c \) has been computed
 - \(b, c \) not overwritten after the expression

```
ad = b + c

\( a = b + c \)

\( d = b + c \)
```

Loop Invariant Code Motion

- Given an expression \(b+c \) inside a loop,
 - does the value of \(b+c \) change inside the loop?
 - is the code executed at least once?

```
a = t

\( a = b + c \)

\( b = \text{read()} \)

\( t = b + c \)
```

```
exit

\( a = b + c \)
```

Partial Redundancy

- Can we place calculations of \(b+c \) such that no path re-executes the same expression

- **Partial Redundancy Elimination (PRE)**
 - subsumes:
 - global common subexpression (full redundancy)
 - loop invariant code motion (partial redundancy for loops)

Unifying theory: More powerful, elegant \(\rightarrow \) but less direct.

II. Preparing the Flow Graph

- A simple flow graph modification improves the result

- **Definition: Critical edges**
 - source basic block has multiple successors
 - destination basic block has multiple predecessors

- **Modify the flow graph: (treat every statement as a basic block)**
 - To keep algorithm simple:
 - restrict placement of instructions to the beginning of a basic block
 - Add a basic block for every edge that leads to a basic block with multiple predecessors (not just on critical edges)
Full Redundancy: A Cut Set in a Graph

Key mathematical concept

- Full redundancy at p: expression a+b redundant on all paths
 - a cut set: nodes that separate entry from p
 - a cut set contains calculation of a+b
 - a, b not redefined

Partial Redundancy: Completing a Cut Set

- Partial redundancy at p: redundant on some but not all paths
 - Add operations to create a cut set containing a+b
 - Note: Moving operations up some path can eliminate redundancy

- Constraint on placement: no wasted operation
 - a+b is “anticipated” at B if its value computed at B will be used along ALL subsequent paths
 - a, b not redefined, no branches that lead to exit with out use

- Range where a+b is anticipated → Choice
Pass 1: Anticipated Expressions

This pass does most of the heavy lifting in eliminating redundancy

- **Backward pass: Anticipated expressions**
 Anticipated(b).in: Set of expressions anticipated at the entry of b

 - An expression is anticipated if its value computed at point p will be used along ALL subsequent paths

<table>
<thead>
<tr>
<th>Anticipated Expressions</th>
<th>Domains</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>backward</td>
<td></td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = \text{EUse}_b \cup (x - \text{EKill}_b))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\cap)</td>
<td></td>
</tr>
<tr>
<td>Boundary</td>
<td>in[exit] = (\emptyset)</td>
<td></td>
</tr>
<tr>
<td>Initialization</td>
<td>in[b] = { all expressions }</td>
<td></td>
</tr>
</tbody>
</table>

- **First approximation:**
 - place operations at the frontier of anticipation
 (boundary between not anticipated and anticipated)

Examples (1)

See the algorithm in action

```
x = a + b
y = a + b
z = a + b
a = 10
r = a + b
a = 10
```
Examples (2)

- Cannot eliminate all redundancy

Examples (3)

Do you know how the algorithm works without simulating it?
Pass 2: Place As Early As Possible

- First approximation: frontier between "not anticipated" & "anticipated"
- Complication: Anticipation may oscillate

\[
\begin{align*}
 a &= 1 \\
 x &= a + b \\
 y &= a + b
\end{align*}
\]

- An anticipation frontier may cover a subsequent frontier.
- Once an expression has been anticipated, it is "available" to subsequent frontiers → no need to re-evaluate.
- \(e \) will be available at \(p \) if \(e \) has been "anticipated but not subsequently killed" on all paths reaching \(p \)

Available Expressions

- \(e \) will be available at \(p \) if \(e \) has been "anticipated but not subsequently killed" on all paths reaching \(p \)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>forward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = (\text{Anticipated}[b].\text{in} \cup x) - \text{EKill}_b)</td>
</tr>
<tr>
<td>^</td>
<td>(\cap)</td>
</tr>
<tr>
<td>Boundary</td>
<td>out[entry] = (\emptyset)</td>
</tr>
<tr>
<td>Initialization</td>
<td>out[b] = {all expressions}</td>
</tr>
</tbody>
</table>
Early Placement

- **earliest(b)**
 - set of expressions added to block b under early placement

Place expression at the earliest point anticipated and not already available

- earliest(b) = anticipated[b].in - available[b].in

- **Algorithm**
 - For all basic block b,
 - if \(x+y \in \text{earliest}[b] \)
 - at beginning of b:
 - let t be the unique variable representing \(x+y \)
 - add \(t = x+y \)
 - replace every original \(x+y \) in the program by t

Pass 3: Lazy Code Motion

Let's be lazy without introducing redundancy.

Delay without creating redundancy to reduce register pressure

An expression e is postponable at a program point p if

- all paths leading to p
 - have seen the earliest placement of e but not a subsequent use

<table>
<thead>
<tr>
<th>Postponable Expressions</th>
<th>Domain</th>
<th>Direction</th>
<th>Transfer Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets of expressions</td>
<td>forward</td>
<td>(f_b(x) = (\text{earliest}[b] \cup x) - \text{EUse}_b)</td>
</tr>
<tr>
<td>^</td>
<td>^</td>
<td>^</td>
<td>^</td>
</tr>
<tr>
<td>Boundary</td>
<td>out[entry] = (\emptyset)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initialization</td>
<td>out[b] = (all expressions)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Latest: frontier at the end of “postponable” cut set

- \(\text{latest}[b] = (\text{earliest}[b] \cup \text{postponable.in}[b]) \cap (\text{EUse}_b \cup \neg (\exists s \in \text{succ}[b](\text{earliest}[s] \cup \text{postponable.in}[s]))) \)
 - OK to place expression: earliest or postponable
 - Need to place at \(b \) if either
 - used in \(b \), or
 - not OK to place in one of its successors
- Works because of pre-processing step (an empty block was introduced to an edge if the destination has multiple predecessors)
 - if \(b \) has a successor that cannot accept postponement, \(b \) has only one successor
 - The following does not exist:

```
OK to place
```

```
OK to place
not OK to place
```

Pass 4: Cleaning Up

Finally, this is easy, it is like liveness

- Eliminate temporary variable assignments unused beyond current block
- Compute: \(\text{Used.out}[b] \): sets of used (live) expressions at exit of \(b \).

<table>
<thead>
<tr>
<th>Used Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Direction</td>
</tr>
<tr>
<td>Transfer Function</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Boundary</td>
</tr>
<tr>
<td>Initialization</td>
</tr>
</tbody>
</table>
Code Transformation

Original version:
For each basic block b, if $x+y \in \text{earliest}[b]$ at beginning of b:
- let t be the unique variable representing $x+y$
- add $t = x+y$, replace every original $x+y$ in the program by t

New version:
For each basic block b, if $(x+y) \in (\text{latest}[b] \cap \neg \text{used.out}[b])$ { }
else
- if $x+y \in \text{latest}[b]$
 - at beginning of b:
 - let t be the unique variable representing $x+y$
 - add $t = x+y$, replace every original $x+y$ in the program by t

4 Passes for Partial Redundancy Elimination

- **Heavy lifting**: Cannot introduce operations not executed originally
 - Pass 1 (backward): **Anticipation**: range of code motion
 - Placing operations at the frontier of anticipation gets most of the redundancy
- **Squeezing the last drop of redundancy**: An anticipation frontier may cover a subsequent frontier
 - Pass 2 (forward): **Availability**
 - **Earliest**: anticipated, but not yet available
- **Push the cut set out -- as late as possible**
 - To minimize register lifetimes
 - Pass 3 (forward): **Postponability**: move it down provided it does not create redundancy
 - **Latest**: where it is used or the frontier of postponability
- **Cleaning up**
 - Pass 4: **Remove temporary assignment**
Remarks

- **Powerful algorithm**
 - Finds many forms of redundancy in one unified framework

- **Illustrates the power of data flow**
 - Multiple data flow problems