Lecture 4

More on Data Flow: Constant Propagation, Speed, Loops

I. Constant Propagation
II. Efficiency of Data Flow Analysis
III. Algorithm to find loops

Reading: Chapter 9.4, 9.6
I. Constant Propagation/Folding

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is the value?

```
x = 2
m = x + e
e = 1
e = 3
p = e + 4
```
Semi-lattice Diagram

- Finite domain?
- Finite height?
Equivalent Definition

- **Meet Operation:**

<table>
<thead>
<tr>
<th></th>
<th>v1</th>
<th>v2</th>
<th>v1 ∧ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td>NAC</td>
<td></td>
</tr>
</tbody>
</table>

- **Note:** `undef ∧ c_2 = c_2!`
Example

\[x = 2 \]

\[p = x \]
Transfer Function

• Assume a basic block has only 1 instruction
• Let \(\text{IN}[b,x], \text{OUT}[b,x] \)
 • be the information for variable \(x \) at entry and exit of basic block \(b \)

 - \(\text{OUT}[\text{entry}, x] = \text{undef} \), for all \(x \).
 - Non-assignment instructions: \(\text{OUT}[b,x] = \text{IN}[b,x] \)
 - Assignment instructions: (next page)
Constant Propagation (Cont.)

- Let an assignment be of the form $x_3 = x_1 + x_2$
 - "+" represents a generic operator
 - $\text{OUT}[b,x] = \text{IN}[b,x]$, if $x \neq x_3$

<table>
<thead>
<tr>
<th>IN[b, x_1]</th>
<th>IN[b, x_2]</th>
<th>OUT[b, x_3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>undefined</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td>c_2</td>
<td>_ _</td>
</tr>
<tr>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td></td>
</tr>
</tbody>
</table>

- Use: $x \preceq y$ implies $f(x) \preceq f(y)$ to check if framework is monotone
 - $[v_1 \ v_2 \ ...] \preceq [v_1' \ v_2' \ ...]$, $f([v_1 \ v_2 \ ...]) \preceq f ([v_1' \ v_2' \ ...])$
Distributive?

\[
\begin{align*}
x &= 2 \\
y &= 3 \\
\end{align*}
\quad \quad
\begin{align*}
x &= 3 \\
y &= 2 \\
\end{align*}
\quad \quad
\begin{align*}
z &= x + y
\end{align*}
\]
Summary of Constant Propagation

• A useful optimization
• Illustrates:
 – abstract execution
 – an infinite semi-lattice
 – a non-distributive problem
II. Efficiency of Iterative Data Flow

• Assume forward data flow for this discussion
• Speed of convergence depends on the ordering of nodes

• How about:

I.

II.
Depth-first Ordering: Reverse Postorder

- **Preorder traversal**: visit the parent before its children
- **Postorder traversal**: visit the children then the parent
- **Preferred ordering**: reverse postorder
- **Intuitively**
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node
"Reverse Post-Order" Iterative Algorithm

input: control flow graph $\text{CFG} = (N, E, \text{Entry}, \text{Exit})$

// Boundary condition
$\text{OUT}[\text{Entry}] = \emptyset$

// Initialization for iterative algorithm
For each basic block B other than Entry
$\text{OUT}[B] = \emptyset$

// iterate
While (changes to any OUT occur) {
 For each basic block B other than Entry in reverse post order {
 $\text{IN}[B] = \bigcup (\text{OUT}[p])$, for all predecessors p of B
 $\text{OUT}[B] = f_B(\text{IN}[B])$ // $\text{OUT}[B]=\text{gen}[B] \cup (\text{IN}[B]-\text{kill}[B])$
 }
}
Consideration of Speed of Convergence

- Does it matter if we go around the same cycle multiple times?

- Cycles do not make a difference:
 - reaching definitions, liveness

- Cycles make a difference: constant propagation

\[
\begin{align*}
a &= b \\
b &= c \\
c &= 1
\end{align*}
\]
Speed of Convergence

- If cycles do not add info:
 - Labeling nodes in a path by their reverse postorder rank:
 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 - info flows down nodes of increasing reverse postorder rank in 1 pass
- Loop depth = max. # of “retreating edges” in any acyclic path
- Maximum # iterations in data flow algorithm = Loop depth+2
 (2 is necessary even if there are no cycles)

- Knuth’s experiments show: average loop depth in real programs = 2.75
III. What is a Loop?

- **Goals:**
 - Define a loop in graph-theoretic terms (control flow graph)
 - Not sensitive to input syntax
 - A uniform treatment for all loops: DO, while, goto’s

- **Informally:** A “natural” loop has
 - edges that form at least a cycle
 - a single entry point
Dominators

- Node \(d \) dominates node \(n \) in a graph (\(d \ dom \ n \)):
 - if every path from the start node to \(n \) goes through \(d \)
 - a node dominates itself

 ![Diagram of dominance relationships]

 - Immediate dominance:
 \[d \ idom \ n : d \ dom \ n, \ d \neq n, \ \neg \exists m \ s.t. \ d \ dom \ m \ and \ m \ dom \ n \]

 - Immediate dominance relationships form a tree
Finding Dominators

• **Definition**

 • Node d dominates node n in a graph ($d \, \text{dom} \, n$) if every path from the start node to n goes through d

• **Formulated as MOP problem:**

 • Node d lies on all possible paths reaching node $n \Rightarrow d \, \text{dom} \, n$

 – Direction:
 – Values:
 – Meet operator:
 – Top:
 – Bottom:
 – Boundary condition: start/exit node =
 – Finite descending chain?
 – Transfer function:

• **Speed:**

 • With reverse postorder, solution to most flow graphs (reducible flow graphs) found in 1 pass
Definition of Natural Loops

• Single entry-point: header (d)
 - a header dominates all nodes in the loop

• A back edge ($n \rightarrow d$) in a flow graph is
 - an edge whose destination dominates its source ($d \text{ dom } n$)

• The natural loop of a back edge ($n \rightarrow d$) is
 $$d + \{ \text{nodes that can reach } n \text{ without going through } d \}$$
Constructing Natural Loops

- The **natural loop of a back edge** \((n \rightarrow d)\) is

 \[d + \{\text{nodes that can reach } n \text{ without going through } d\} \]

- Remove \(d\) from the flow graph, find all predecessors of \(n\)

- Example:
Inner Loops

- If two loops do not have the same header:
 - they are either disjoint, or
 - one is entirely contained (nested within) the other
 - inner loop: one that contains no other loop.

- If two loops share the same header:
 - Hard to tell which is the inner loop
 - Combine as one
Graph Edges

- **Depth-first spanning tree**
 - Edges traversed in a depth-first search of the flow graph form a depth-first spanning tree

- **Categorizing edges in graph**
 - **Advancing** edges: from ancestor to proper descendant
 - **Retreating** edges: from descendant to ancestor (not necessarily proper)
 - **Cross** edges: all other edges
Back Edges

• Definition
 – **Back edge**: \(n \rightarrow d, d \text{ dom } n \)

• Relationships between graph edges and back edges
 – a back edge must be a retreating edge
 dominator \(\Rightarrow \) visit \(d \) before \(n \), \(n \) must be a descendant of \(d \)
 – a retreating edge is not necessarily a back edge

• Most programs (all structured code, and most GOTO programs):
 – retreating edges = back edges
Summary

• Constant propagation
• Introduced the reverse postorder iterative algorithm
• Define loops in graph theoretic terms
• Definitions and algorithms for
 • Dominators
 • Back edges
 • Natural loops