Lecture 4

More on Data Flow:
Constant Propagation, Speed, Loops

I. Constant Propagation
II. Efficiency of Data Flow Analysis
III. Algorithm to find loops

Reading: Chapter 9.4, 9.6

I. Constant Propagation/Folding

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is the value?

![Diagram of constant propagation]

```
x = 2
m = x + e
e = 3
```

```
p = e + 4
```
Semi-lattice Diagram

- Finite domain?
- Finite height?

Equivalent Definition

- Meet Operation:

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v1 ∧ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td>undef</td>
<td>c₂</td>
<td>c₂</td>
</tr>
<tr>
<td>undef</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>c₁</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td>c₁</td>
<td>c₂</td>
<td>c₂</td>
</tr>
<tr>
<td>c₁</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td>undef</td>
</tr>
<tr>
<td>NAC</td>
<td>c₂</td>
<td>c₂</td>
</tr>
<tr>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
</tbody>
</table>

- Note: undef ∧ c₂ = c₂!
Transfer Function

- Assume a basic block has only 1 instruction
- Let \(\text{IN}[b,x], \text{OUT}[b,x] \)
 - be the information for variable \(x \) at entry and exit of basic block \(b \)

- \(\text{OUT}[\text{entry}, x] = \text{undef}, \) for all \(x \).
- Non-assignment instructions: \(\text{OUT}[b,x] = \text{IN}[b,x] \)
- Assignment instructions: (next page)
Constant Propagation (Cont.)

- Let an assignment be of the form $x_3 = x_1 + x_2$
 - "+" represents a generic operator
 - $\text{OUT}[b,x] = \text{IN}[b,x]$, if $x \neq x_3$

<table>
<thead>
<tr>
<th>IN[b,x_1]</th>
<th>IN[b,x_2]</th>
<th>OUT[b,x_3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>c_2</td>
<td>c_2</td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td>c_2</td>
</tr>
<tr>
<td>NAC</td>
<td>c_2</td>
<td>NAC</td>
</tr>
</tbody>
</table>

- Use: $x \leq y$ implies $f(x) \leq f(y)$ to check if framework is monotone
 - $[v_1, v_2, \ldots] \leq [v_1', v_2', \ldots]$, $f([v_1, v_2, \ldots]) \leq f([v_1', v_2', \ldots])$

Distributive?

```
x = 2
y = 3
z = x + y
```

```
x = 3
y = 2
z = x + y
```
Summary of Constant Propagation

- A useful optimization
- Illustrates:
 - abstract execution
 - an infinite semi-lattice
 - a non-distributive problem

II. Efficiency of Iterative Data Flow

- Assume forward data flow for this discussion
- Speed of convergence depends on the ordering of nodes

- How about:
 I. A → B → C → D
 II. A → D → B → E → C → exit
Depth-first Ordering: Reverse Postorder

- **Preorder traversal**: visit the parent before its children
- **Postorder traversal**: visit the children then the parent
- **Preferred ordering**: reverse postorder
- **Intuitively**
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node

"Reverse Post-Order" Iterative Algorithm

input: control flow graph $CFG = (N, E, \text{Entry, Exit})$

// Boundary condition
OUT[Entry] = ∅

// Initialization for iterative algorithm
For each basic block B other than Entry
 OUT[B] = ∅

// iterate
While (changes to any OUT occur) {
 For each basic block B other than Entry in reverse post order {
 IN[B] = U (OUT[p]), for all predecessors p of B
 }
}
Consideration of Speed of Convergence

• Does it matter if we go around the same cycle multiple times?
• Cycles do not make a difference:
 – reaching definitions, liveness
• Cycles make a difference: constant propagation

\[
\begin{align*}
a &= b \\
b &= c \\
c &= 1
\end{align*}
\]

Speed of Convergence

• If cycles do not add info:
 – Labeling nodes in a path by their reverse postorder rank:
 \[1 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 2 \rightarrow 4 \ldots\]
 – info flows down nodes of increasing reverse postorder rank in 1 pass
• Loop depth = max. # of "retreating edges" in any acyclic path
• Maximum # iterations in data flow algorithm = Loop depth + 2
 (2 is necessary even if there are no cycles)

• Knuth's experiments show: average loop depth in real programs = 2.75
III. What is a Loop?

- **Goals:**
 - Define a loop in graph-theoretic terms (control flow graph)
 - Not sensitive to input syntax
 - A uniform treatment for all loops: DO, while, goto's

- **Informally:** A "natural" loop has
 - edges that form at least a cycle
 - a single entry point

![Diagram of a loop with entry points a, b, c, d]

Dominators

- Node \(d \) dominates node \(n \) in a graph (\(d \text{ dom} n \)):
 - if every path from the start node to \(n \) goes through \(d \)
 - a node dominates itself

![Diagram of a graph with nodes 1 to 8 and node 1 as the start]

- Immediate dominance:
 \[d \text{idom} n \iff d \text{ dom} n, d \neq n, \not\exists m \text{ s.t.} d \text{ dom } m \text{ and } m \text{ dom } n \]

- Immediate dominance relationships form a tree
Finding Dominators

- **Definition**
 - Node \(d \) dominates node \(n \) in a graph (\(d \) dom \(n \)) if every path from the start node to \(n \) goes through \(d \)

- **Formulated as MOP problem**:
 - \(d \) lies on all possible paths reaching node \(n \) \(\Rightarrow \) \(d \) dom \(n \)
 - Direction:
 - Values:
 - Meet operator:
 - Top:
 - Bottom:
 - Boundary condition: start/exit node =
 - Finite descending chain?
 - Transfer function:

- **Speed**:
 - With reverse postorder, solution to most flow graphs (reducible flow graphs) found in 1 pass

Definition of Natural Loops

- **Single entry-point**: header \((d') \)
 - a header dominates all nodes in the loop

- **A back edge** \((n \rightarrow d') \) in a flow graph is
 - an edge whose destination dominates its source (\(d \) dom \(n \))

- **The natural loop of a back edge** \((n \rightarrow d') \) is
 \(d' + \{ \text{nodes that can reach } n \text{ without going through } d' \} \)
Constructing Natural Loops

- The natural loop of a back edge \((n \rightarrow d)\) is
 \[d + \{ \text{nodes that can reach } n \text{ without going through } d \} \]
- Remove \(d\) from the flow graph, find all predecessors of \(n\)
- Example:

Inner Loops

- If two loops do not have the same header:
 - they are either disjoint, or
 - one is entirely contained (nested within) the other
 - inner loop: one that contains no other loop.
- If two loops share the same header:
 - Hard to tell which is the inner loop
 - Combine as one
Graph Edges

- **Depth-first spanning tree**
 - Edges traversed in a depth-first search of the flow graph form a depth-first spanning tree

- **Categorizing edges in graph**
 - **Advancing edges**: from ancestor to proper descendant
 - **Retreating edges**: from descendant to ancestor (not necessarily proper)
 - **Cross edges**: all other edges

Back Edges

- **Definition**
 - Back edge: \(n \rightarrow d, d \text{ dom } n \)

- **Relationships between graph edges and back edges**
 - A back edge must be a retreating edge
 - Dominator \(\Rightarrow \) Visit \(d \) before \(n \)
 - \(n \) must be a descendant of \(d \)
 - A retreating edge is not necessarily a back edge

- **Most programs (all structured code, and most GOTO programs):**
 - Retreating edges = back edges
Summary

- Constant propagation
- Introduced the reverse postorder iterative algorithm
- Define loops in graph theoretic terms
- Definitions and algorithms for
 - Dominators
 - Back edges
 - Natural loops