Lecture 3
Foundation of Data Flow Analysis

I Semi-lattice (set of values, meet operator)
II Transfer functions
III Correctness, precision and convergence
IV Meaning of Data Flow Solution

Reading: Chapter 9.3
I. Purpose of a Framework

• **Purpose 1**
 – Prove properties of entire family of problems once and for all
 • Will the program converge?
 • What does the solution to the set of equations mean?

• **Purpose 2:**
 – Aid in software engineering: re-use code
The Data-Flow Framework

- Data-flow problems \((F, V, \land)\) are defined by
 - A semi-lattice
 - domain of values \(V\)
 - meet operator \(\land : V \times V \to V\)
 - A family of transfer functions \(F : V \to V\)
Semi-lattice: Structure of the Domain of Values

- A semi-lattice $S = \langle a \text{ set of values } V, \text{ a meet operator } \wedge \rangle$

- Properties of the meet operator
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$

- Examples of meet operators?
- Non-examples?
Example of a Semi-Lattice Diagram

- \((V, \wedge) : V = \{ x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\} \}, \wedge = U\)

\[
\begin{align*}
\emptyset & \rightarrow (T) \\
\{d_1\} & \rightarrow \{d_2\} \rightarrow \{d_3\}
\end{align*}
\]

- \(\wedge y = \text{first common descendant of } x \& y\)
- A meet semi-lattice is bounded if there exists a top element \(T\), such that \(x \wedge T = x\) for all \(x\).
- A bottom element \(\bot\) exists, if \(x \wedge \bot = \bot\) for all \(x\).
A Meet Operator Defines a Partial Order

- Partial order of a meet semi-lattice

\[x \leq y \text{ if and only if } x \land y = x \]

- Meet operator: \(\land \)

- Properties of meet operator guarantee that \(\leq \) is a partial order
 - Reflexive: \(x \leq x \)
 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)
Another Example

- **Semi-lattice**
 - $V = \{x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\}\}$
 - $\wedge = \cap$

```
      {d_1,d_2,d_3} (T)
     /
{d_1,d_2}   {d_1,d_3}   {d_2,d_3}
/   /   /
{d_1} {d_2} {d_3}
    /   /
   {d_1} {d_2} {d_3} (⊥)
    /
   {d_1} {d_2} {d_3}
```

- \leq is
Meet Semi-Lattices vs Partially Ordered Sets

- A **meet-semilattice** is a partially ordered set which has a **meet** (or **greatest lower bound**) for any nonempty finite subset.

 \[
 \begin{array}{c}
 \{\} \\
 \{d_1\} & \{d_2\} & \{d_3\} \\
 \{d_1, d_2\} & \{d_1, d_3\} & \{d_2, d_3\} \\
 \{d_1, d_2, d_3\} & & \\
 \end{array}
 \]

- **Greatest lower bound**: \(x \wedge y = \text{First common descendant of } x \& y\)
- **Largest**: top element \(T\), if \(x \wedge T = x\) for all \(x\).
- **Smallest**: bottom element \(\perp\), if \(x \wedge \perp = \perp\) for all \(x\).
Drawing a Semi-Lattice Diagram

- \((x < y) \equiv (x \leq y) \land (x \neq y)\)

- **A semi-lattice diagram:**
 - Set of nodes: set of values
 - Set of edges \(\{(y, x): x < y \text{ and } \neg \exists z \text{ s.t. } (x < z) \land (z < y)\}\)
Summary

Three ways to define a semi-lattice:

• Set of values + meet operator
 – idempotent: $x \land x = x$
 – commutative: $x \land y = y \land x$
 – associative: $x \land (y \land z) = (x \land y) \land z$

• Set of values
 + partial order with a greatest lower bound for any nonempty subset
 – Reflexive: $x \leq x$
 – Antisymmetric: if $x \leq y$ and $y \leq x$ then $x = y$
 – Transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$

• A semi-lattice diagram
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements
- Example: Union of definitions
 - For each element
 - $\langle x_1, x_2 \rangle \leq \langle y_1, y_2 \rangle$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$
Descending Chain

• Definition
 – The **height** of a lattice is the largest number of > relations that will fit in a descending chain.
 \[x_0 > x_1 > \ldots \]

• Height of values in reaching definitions?

• Important property: finite descending chains
II. Transfer Functions

- A family of transfer functions F
- Basic Properties $f : V \rightarrow V$
 - Has an identity function
 • $\exists f$ such that $f(x) = x$, for all x.
 - Closed under composition
 • if $f_1, f_2 \in F$, $f_1 \circ f_2 \in F$
Monotonicity: 2 Equivalent Definitions

- A framework \((F, V, \wedge)\) is monotone iff
 - \(x \leq y\) implies \(f(x) \leq f(y)\)

- Equivalently,
 a framework \((F, V, \wedge)\) is monotone iff
 - \(f(x \wedge y) \leq f(x) \wedge f(y)\),
 - meet inputs, then apply \(f\)
 - \(\leq\)
 - apply \(f\) individually to inputs, then meet results
Example

- Reaching definitions: $\mathcal{A}(x) = \text{Gen } U (x - \text{Kill}), \ & = U$
 - Definition 1:
 - Let $x_1 \leq x_2$,
 - $\mathcal{A}(x_1): \text{Gen } U (x_1 - \text{Kill})$
 - $\mathcal{A}(x_2): \text{Gen } U (x_2 - \text{Kill})$

 - Definition 2:
 - $\mathcal{A}(x_1 \land x_2) = (\text{Gen } U ((x_1 \cup x_2) - \text{Kill}))$
 - $\mathcal{A}(x_1) \land f(x_2) = (\text{Gen } U (x_1 - \text{Kill}) \cup \text{Gen } U (x_2 - \text{Kill}))$
Distributivity

A framework \((F, V, \land)\) is distributive if and only if
\[
f(x \land y) = f(x) \land f(y),
\]
meet input, then apply \(f\) is equal to
apply the transfer function individually then merge result
Important Note

- Monotone framework does not mean that $f(x) \leq x$
 - e.g. Reaching definition for two definitions in program
 - suppose: f: Gen = \{d_1\} ; Kill = \{d_2\}$
III. Properties of Iterative Algorithm

- **Given**

 A monotone data flow framework
 With finite descending chains

- **The iterative algorithm where all interior points are initialized to T**

 - Converges
 - To the Maximum Fixed Point (MFP) solution of equations
Key Concept

- The answer is a set of values for all basic block boundaries:
 \{ in[b], out[b] \mid b \text{ in the program}\}
- We need to prove the invariant:
 Values assigned to the same in[b] or out[b] cannot increase in each iteration of the algorithm
- The algorithm converges if the semilattice has finite descending chains
- Given an initialization of T, the answer is the MFP, because any larger value is not a solution.
Sketch of Inductive Proof

For each IN/OUT of an interior program point:
- Invariant: new value ≤ old value in any step
- Start with T (largest value)
- Proof by induction
 - 1st transfer function or meet operator: new value ≤ old value (T)
 - Meet operation:
 - Assume new inputs ≤ old inputs, new output ≤ old output
 - Transfer function (in a monotone framework)
 - Assume new inputs ≤ old inputs, new output ≤ old output
IV. What Does the Solution Mean?

- **IDEAL data flow solution**
 - Let $f_1, ..., f_m : \in F$, f_i is the transfer function for node i

 $$f_p = f_{n_k} \cdots f_{n_1}, \text{ p is a path through nodes } n_1, ..., n_k$$

 $$f_p = \text{identify function, if p is an empty path}$$

 - For each node n: $\wedge f_{p_i}$ (boundary value),
 for all possibly executed paths p_i reaching n
 - Example

```
if sqr(y) >= 0
    if true
        x = 1
    else
        x = 0
```

- **Determining all possibly executed paths is undecidable**
Meet-Over-Paths MOP

- **Err in the conservative direction**

- **Meet-Over-Paths MOP**
 - Assume every edge is traversed
 - For each node \(n \):
 - \(MOP(n) = \bigwedge f_{p_i} \) (boundary value), for all paths \(p_i \) reaching \(n \)

- **Compare MOP with IDEAL**
 - MOP includes more paths than IDEAL
 - MOP = IDEAL \(\land \) Result(Unexecuted-Paths)
 - MOP \(\leq \) IDEAL
 - MOP is a “smaller” solution, more conservative, **safe**

- **MOP \(\leq \) IDEAL**
 - Goal: as close to MOP from below as possible
Solving Data Flow Equations

• What is the difference between MOP and MFP of data flow equations?

Therefore

– FP ≤ MFP ≤ MOP ≤ IDEAL
– FP, MFP, MOP are safe
– If framework is distributive, FP ≤ MFP = MOP ≤ IDEAL
Summary

- **A data flow framework**
 - Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
 - Transfer functions
 - summarizes each basic block
 - boundary conditions
- **Properties of data flow framework:**
 - Monotone framework and finite descending chains
 - \(\Rightarrow\) iterative algorithm converges
 - \(\Rightarrow\) finds maximum fixed point (MFP)
 - \(\Rightarrow\) \(FP \leq MFP \leq MOP \leq IDEAL\)
 - Distributive framework
 - \(\Rightarrow\) \(FP \leq MFP = MOP \leq IDEAL\)