Lecture 3
Foundation of Data Flow Analysis

I Semi-lattice (set of values, meet operator)
II Transfer functions
III Correctness, precision and convergence
IV Meaning of Data Flow Solution

Reading: Chapter 9.3
I. Purpose of a Framework

- **Purpose 1**
 - Prove properties of entire family of problems once and for all
 - Will the program converge?
 - What does the solution to the set of equations mean?

- **Purpose 2:**
 - Aid in software engineering: re-use code
The Data-Flow Framework

- Data-flow problems \((F, V, \wedge)\) are defined by
 - A semi-lattice
 - domain of values \(V\)
 - meet operator \(\wedge: V \times V \to V\)
 - A family of transfer functions \(F: V \to V\)
Semi-lattice: Structure of the Domain of Values

- A semi-lattice $S = \langle a \text{ set of values } V, \text{ a meet operator } \wedge \rangle$

- Properties of the meet operator
 - idempotent: $x \wedge x = x$
 - commutative: $x \wedge y = y \wedge x$
 - associative: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$

- Examples of meet operators?
- Non-examples?
Example of a Semi-Lattice Diagram

- \((V, \wedge) : V = \{x | \text{such that } x \subseteq \{d_1,d_2,d_3\}\}, \wedge = U\)

- \(x \wedge y = \text{first common descendant of } x \& y\) \[\text{important}\]
- A meet semi-lattice is bounded if there exists a top element \(T\), such that \(x \wedge T = x\) for all \(x\).
- A bottom element \(\bot\) exists, if \(x \wedge \bot = \bot\) for all \(x\).
Meet Semi-Lattices vs Partially Ordered Sets

• A meet-semilattice is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset.

 ![Diagram of meet-semilattice]

 - Greatest lower bound: \(x \wedge y = \text{First common descendant of } x \& y \)
 - Largest: top element \(T \), if \(x \wedge T = x \) for all \(x \).
 - Smallest: bottom element \(\bot \), if \(x \wedge \bot = \bot \) for all \(x \).
A Meet Operator Defines a Partial Order

- Partial order of a meet semi-lattice
 \[x \leq y \text{ if and only if } x \land y = x \]

- Meet operator: \(\land \)

- Properties of meet operator guarantee that \(\leq \) is a partial order
 - Reflexive: \(x \leq x \)
 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)
Drawing a Semi-Lattice Diagram

- \((x < y) \equiv (x \leq y) \land (x \neq y)\)

- **A semi-lattice diagram:**
 - Set of nodes: set of values
 - Set of edges \(\{(y, x): x < y \text{ and } \neg \exists z \text{ s.t. } (x < z) \land (z < y)\}\)
Summary

Three ways to define a semi-lattice:
- Set of values + meet operator
 - idempotent: $x \land x = x$
 - commutative: $x \land y = y \land x$
 - associative: $x \land (y \land z) = (x \land y) \land z$
- Set of values
 + partial order with a greatest lower bound for any nonempty subset
 - Reflexive: $x \leq x$
 - Antisymmetric: if $x \leq y$ and $y \leq x$ then $x = y$
 - Transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$
- A semi-lattice diagram
Another Example

- **Semi-lattice**
 - $V = \{x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\}\}$
 - $\wedge = \cap$

\[
\begin{array}{c}
\{d_1,d_2,d_3\} \\
\{d_1,d_2\} & \{d_1,d_3\} & \{d_2,d_3\} \\
\{d_1\} & \{d_2\} & \{d_3\} \\
\{} & & \{} \\
\end{array}
\]

- \leq is
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements
- Example: Union of definitions
 - For each element

 \[
 \begin{array}{ccc}
 \text{def1} & \text{def2} & \text{def1} \times \text{def2} \\
 \{\} & \{\} & \{\},\{\} \\
 \{d_1\} & \{d_2\} & \{\},\{d_2\},\{d_1\},\{\}
 \end{array}
 \]

 - $<x_1, x_2> \leq <y_1, y_2>$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$
Descending Chain

• **Definition**
 - The **height** of a lattice is the largest number of > relations that will fit in a descending chain.
 \[x_0 > x_1 > \ldots \]

• Height of values in reaching definitions?

• Important property: finite descending chains
II. Transfer Functions

• A family of transfer functions F
• Basic Properties $f: V \rightarrow V$

 – Has an identity function
 • $\exists f$ such that $f(x) = x$, for all x.

 – Closed under composition
 • if $f_1, f_2 \in F$, $f_1 \circ f_2 \in F$
Monotonicity: 2 Equivalent Definitions

• A framework \((F, V, \wedge)\) is monotone iff
 – \(x \leq y\) implies \(f(x) \leq f(y)\)

• Equivalently,
 a framework \((F, V, \wedge)\) is monotone iff
 – \(f(x \wedge y) \leq f(x) \wedge f(y)\),
 – meet inputs, then apply \(f\)
 \(\leq\)
 apply \(f\) individually to inputs, then meet results
Example

- Reaching definitions: $\mathcal{A}(x) = Gen \ U (x - Kill), \land = U$

 - Definition 1:

 - Let $x_1 \leq x_2$,

 $\mathcal{A}(x_1): Gen \ U (x_1 - Kill)$

 $\mathcal{A}(x_2): Gen \ U (x_2 - Kill)$

 - Definition 2:

 - $\mathcal{A}(x_1 \land x_2) = (Gen \ U ((x_1 \ U x_2) - Kill))$

 $\mathcal{A}(x_1) \land \mathcal{A}(x_2) = (Gen \ U (x_1 - Kill)) \ U (Gen \ U (x_2 - Kill))$
Distributivity

- A framework \((F, V, \wedge)\) is distributive if and only if
 \[f(x \wedge y) = f(x) \wedge f(y), \]

meet input, then apply \(f\) is equal to
apply the transfer function individually then merge result
Important Note

• Monotone framework does not mean that $f(x) \leq x$
 – e.g. Reaching definition for two definitions in program
 – suppose: f: Gen = \{d_1\} ; Kill = \{d_2\}
III. Properties of Iterative Algorithm

• Given
 A monotone data flow framework
 With finite descending chains

• The iterative algorithm where all interior points are initialized to T
 – Converges
 – To the Maximum Fixed Point (MFP) solution of equations
Proof

• The answer is a set of values for all basic block boundaries:
 { in[b], out[b] | b in the program}
• Invariant:
 Values assigned to the same in[b] or out[b] cannot increase in each
 iteration of the algorithm
• The algorithm converges if the semilattice has finite descending
 chains
• The answer is the MFP, because any larger value is not a solution.
Sketch of Inductive Proof

For each IN/OUT of an interior program point:

- Invariant: new value ≤ old value in any step
- Start with T (largest value)
- Proof by induction
 - 1st transfer function or meet operator: new value ≤ old value (T)
 - Meet operation:
 - Assume new inputs ≤ old inputs, new output ≤ old output
 - Transfer function (in a monotone framework)
 - Assume new inputs ≤ old inputs, new output ≤ old output
IV. What Does the Solution Mean?

• IDEAL data flow solution
 – Let $f_1, \ldots, f_m : \in F$, f_i is the transfer function for node i

 $$f_p = f_{n_k} \cdot \ldots \cdot f_{n_1}, \text{p is a path through nodes } n_1, \ldots, n_k$$

 $$f_p = \text{identify function, if } p \text{ is an empty path}$$

 – For each node n: $\bigwedge f_{p_i}$ (boundary value),
 for all possibly executed paths p_i reaching n
 – Example

    ```
    if sqr(y) >= 0
    false
    x = 0
    true
    x = 1
    ```

• Determining all possibly executed paths is undecidable
Meet-Over-Paths MOP

• Err in the conservative direction

• Meet-Over-Paths MOP
 – Assume every edge is traversed
 – For each node n:
 – $\text{MOP}(n) = \bigwedge f_{p_i}$ (boundary value), for all paths p_i reaching n

• Compare MOP with IDEAL
 – MOP includes more paths than IDEAL
 – MOP = IDEAL \land Result(Unexecuted-Paths)
 – MOP \leq IDEAL
 – MOP is a “smaller” solution, more conservative, safe

• MOP \leq IDEAL
 – Goal: as close to MOP from below as possible
Solving Data Flow Equations

• What is the difference between MOP and MFP of data flow equations?

• Therefore
 – $FP \leq MFP \leq MOP \leq IDEAL$
 – FP, MFP, MOP are safe
 – If framework is distributive, $FP \leq MFP = MOP \leq IDEAL$
Summary

• A data flow framework
 – Semi-lattice
 • set of values (top)
 • meet operator
 • finite descending chains?
 – Transfer functions
 • summarizes each basic block
 • boundary conditions

• Properties of data flow framework:
 – Monotone framework and finite descending chains

⇒ iterative algorithm converges
⇒ finds maximum fixed point (MFP)
⇒ $\text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL}$

– Distributive framework
⇒ $\text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL}$