I. Purpose of a Framework

- **Purpose 1**
 - Prove properties of entire family of problems once and for all
 - Will the program converge?
 - What does the solution to the set of equations mean?

- **Purpose 2**
 - Aid in software engineering: re-use code
The Data-Flow Framework

- Data-flow problems \((F, V, \land)\) are defined by
 - A semi-lattice
 - domain of values \(V\)
 - meet operator \(\land: V \times V \rightarrow V\)
 - A family of transfer functions \(F: V \rightarrow V\)

Semi-lattice: Structure of the Domain of Values

- A semi-lattice \(S = \langle\text{a set of values } V, \text{ a meet operator } \land\rangle\)

- Properties of the meet operator
 - idempotent: \(x \land x = x\)
 - commutative: \(x \land y = y \land x\)
 - associative: \(x \land (y \land z) = (x \land y) \land z\)

- Examples of meet operators ?
- Non-examples ?
Example of a Semi-Lattice Diagram

- \((V, \wedge) : V = \{x \mid x \subseteq \{d_1, d_2, d_3\}\}, \wedge = U\)

- \(x \wedge y = \text{first common descendant of } x \& y\) \(\quad\text{important}\)
- A meet semi-lattice is bounded if there exists a top element \(T\), such that \(x \wedge T = x\) for all \(x\).
- A bottom element \(\bot\) exists, if \(x \wedge \bot = \bot\) for all \(x\).

Meet Semi-Lattices vs Partially Ordered Sets

- A meet-semilattice is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset.

- Greatest lower bound: \(x \wedge y = \text{First common descendant of } x \& y\)
- Largest: top element \(T\), if \(x \wedge T = x\) for all \(x\).
- Smallest: bottom element \(\bot\), if \(x \wedge \bot = \bot\) for all \(x\).
A Meet Operator Defines a Partial Order

- **Partial order of a meet semi-lattice**
 \[x \leq y \text{ if and only if } x \land y = x \]

- **Meet operator: \(U \)**

- **Properties of meet operator guarantee that \(\leq \) is a partial order**
 - Reflexive: \(x \leq x \)
 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

Drawing a Semi-Lattice Diagram

- \((x < y) \equiv (x \leq y) \land (x \neq y) \)

- **A semi-lattice diagram:**
 - Set of nodes: set of values
 - Set of edges \(\{(y, x): x < y \text{ and } \exists z \text{ s.t. } (x < z) \land (z < y)\} \)
Summary

Three ways to define a semi-lattice:

- Set of values + meet operator
 - idempotent: \(x \land x = x \)
 - commutative: \(x \land y = y \land x \)
 - associative: \(x \land (y \land z) = (x \land y) \land z \)

- Set of values
 + partial order with a greatest lower bound for any nonempty subset
 - Reflexive: \(x \leq x \)
 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

- A semi-lattice diagram

Another Example

- Semi-lattice
 - \(V = \{ x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\}\} \)
 - \(\land = \cap \)

- \(\leq \) is

\[
\begin{array}{c}
\{d, d_2, d_3\} \\
\{d, d_3\} \\
\{d_3\} \\
\{\}\end{array}
\begin{array}{ccc}
(T) \\
(d_2, d_3) \\
(d_3, d_3) \\
(d_3)
\end{array}
\begin{array}{c}
(d_1, d_3) \\
(d_1, d_3) \\
(d_1) \\
\{\}\end{array}
\begin{array}{c}
(\perp)
\end{array}
\]
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements
- **Example**: Union of definitions
 - For each element
 - \(<x_1, x_2> \leq <y_1, y_2> \text{ iff } x_1 \leq y_1 \text{ and } x_2 \leq y_2\)

Descending Chain

- **Definition**
 - The height of a lattice is the largest number of $>$ relations that will fit in a descending chain.
 - $x_0 > x_1 > ...$

- Height of values in reaching definitions?

- Important property: finite descending chains
II. Transfer Functions

- A family of transfer functions \(F \)
- Basic Properties \(f : V \rightarrow V \)
 - Has an identity function
 - \(\exists f \) such that \(f(x) = x \), for all \(x \).
 - Closed under composition
 - if \(f_1, f_2 \in F \), \(f_1 \cdot f_2 \in F \)

Monotonicity: 2 Equivalent Definitions

- A framework \((F, V, \wedge) \) is monotone iff
 - \(x \leq y \) implies \(f(x) \leq f(y) \)

- Equivalently,
 a framework \((F, V, \wedge) \) is monotone iff
 - \(f(x \wedge y) \leq f(x) \wedge f(y) \),
 - meet inputs, then apply \(f \)
 - apply \(f \) individually to inputs, then meet results
Example

- **Reaching definitions:** $f(x) = \text{Gen } U (x - \text{Kill}), \land = U$

 - **Definition 1:**
 - Let $x_1 \leq x_2$,

 $f(x_1): \text{Gen } U (x_1 - \text{Kill})$

 $f(x_2): \text{Gen } U (x_2 - \text{Kill})$

 - **Definition 2:**
 - $f(x_1 \land x_2) = (\text{Gen } U ((x_1 \cup x_2) - \text{Kill}))$

 $f(x_1) \land f(x_2) = (\text{Gen } U (x_1 - \text{Kill})) \cup (\text{Gen } U (x_2 - \text{Kill}))$

Distributivity

- **A framework** (F, V, \land) **is distributive if and only if**

 $f(x \land y) = f(x) \land f(y)$,

 meet input, then apply f is equal to

 apply the transfer function individually then merge result
Important Note

- Monotone framework does not mean that $f(x) \leq x$
 - e.g. Reaching definition for two definitions in program
 - suppose: $f: \text{Gen} = \{d_1\}; \text{Kill} = \{d_2\}$

III. Properties of Iterative Algorithm

- Given:
 - \wedge and monotone data flow framework
 - Finite descending chain
 - \Rightarrow Converges

- Initialization of interior points to T
 - \Rightarrow Maximum Fixed Point (MFP) solution of equations
Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:
- Its value cannot go up (new value \(\leq \) old value) during algorithm
- Start with \(T \) (largest value)
- Proof by induction
 - Apply 1st transfer function / meet operator \(\leq \) old value (T)
 - Inputs to "meet" change (get smaller)
 - since inputs get smaller, new output \(\leq \) old output
 - Inputs to transfer functions change (get smaller)
 - monotonicity of transfer function:
 - since input gets smaller, new output \(\leq \) old output
- Algorithm iterates until equations are satisfied
- Values do not come down unless some constraints drive them down.
- Therefore, finds the largest solution that satisfies the equations

IV. What Does the Solution Mean?

- IDEAL data flow solution
 - Let \(f_1, ..., f_m : \in F, f_i \) is the transfer function for node \(i \)
 \[f_p = f_n \circ ... \circ f_{n_k}, \text{p is a path through nodes } n_{i_k} \]
 \[f_p = \text{identify function, if } p \text{ is an empty path} \]
 - For each node \(n: \land f_p \) (boundary value),
 for all possibly executed paths \(p \), reaching \(n \)
 - Example

![Diagram of a data flow graph]

- Determining all possibly executed paths is undecidable
Meet-Over-Paths MOP

- Err in the conservative direction

- **Meet-Over-Paths MOP**
 - Assume every edge is traversed
 - For each node \(n \):
 - \(\text{MOP}(n) = \wedge f_{p_i} \) (boundary value), for all paths \(p_i \) reaching \(n \)

- **Compare MOP with IDEAL**
 - MOP includes more paths than IDEAL
 - MOP = IDEAL \(\land \) Result(Unexecuted-Paths)
 - MOP \(\leq \) IDEAL
 - MOP is a “smaller” solution, more conservative, safe

- **MOP \(\leq \) IDEAL**
 - Goal: as close to MOP from below as possible

Solving Data Flow Equations

- What is the difference between MOP and MFP of data flow equations?

- Therefore
 - \(\text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL} \)
 - FP, MFP, MOP are safe
 - If framework is distributive, \(\text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL} \)
Summary

• A data flow framework
 – Semi-lattice
 • set of values (top)
 • meet operator
 • finite descending chains?
 – Transfer functions
 • summarizes each basic block
 • boundary conditions

• Properties of data flow framework:
 – Monotone framework and finite descending chains
 ⇒ iterative algorithm converges
 ⇒ finds maximum fixed point (MFP)
 ⇒ \(FP \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL} \)

 ⇒ Distributive framework
 ⇒ \(FP \leq \text{MFP} = \text{MOP} \leq \text{IDEAL} \)