Lecture 3
Foundation of Data Flow Analysis

I Semi-lattice (set of values, meet operator)
II Transfer functions
III Correctness, precision and convergence
IV Meaning of Data Flow Solution

Reading: Chapter 9.3

I. Purpose of a Framework

• Purpose 1
 – Prove properties of entire family of problems once and for all
 • Will the program converge?
 • What does the solution to the set of equations mean?

• Purpose 2:
 – Aid in software engineering: re-use code
The Data-Flow Framework

- Data-flow problems \((F, V, \land)\) are defined by
 - A semi-lattice
 - domain of values \(V\)
 - meet operator \(\land: V \times V \rightarrow V\)
 - A family of transfer functions \(F: V \rightarrow V\)

Semi-lattice: Structure of the Domain of Values

- A semi-lattice \(S = \langle\text{a set of values } V, \text{ a meet operator } \land\rangle\)

- Properties of the meet operator
 - idempotent: \(x \land x = x\)
 - commutative: \(x \land y = y \land x\)
 - associative: \(x \land (y \land z) = (x \land y) \land z\)

- Examples of meet operators ?
- Non-examples ?
Example of a Semi-Lattice Diagram

- \((V, \wedge) : V = \{x \mid x \subseteq \{d_1, d_2, d_3\}\}, \wedge = U\)

\[
\begin{array}{c}
\emptyset \\
\{d_1\} \\
\{d_2\} \\
\{d_3\} \\
\{d_1, d_2\} \\
\{d_1, d_3\} \\
\{d_2, d_3\} \\
\{d_1, d_2, d_3\} \\
(T) \\
(\bot)
\end{array}
\]

- \(x \wedge y = \) first common descendant of \(x \& y\) \(\textbf{important}\)
- A meet semi-lattice is bounded if there exists a top element \(T\), such that \(x \wedge T = x\) for all \(x\).
- A bottom element \(\bot\) exists, if \(x \wedge \bot = \bot\) for all \(x\).

A Meet Operator Defines a Partial Order

- Partial order of a meet semi-lattice
 \(\leq: x \leq y\) if and only if \(x \wedge y = x\)

\[
\begin{array}{c}
T \\
\{d_1\} \\
\{d_2\} \\
\{d_3\} \\
\{d_1, d_2\} \\
\{d_1, d_3\} \\
\{d_2, d_3\} \\
\{d_1, d_2, d_3\} \\
(T) \\
(\bot)
\end{array}
\]

- Meet operator: \(U\)

Partial order \(\leq:\)

- Properties of meet operator guarantee that \(\leq\) is a partial order
 - Reflexive: \(x \leq x\)
 - Antisymmetric: if \(x \leq y\) and \(y \leq x\) then \(x = y\)
 - Transitive: if \(x \leq y\) and \(y \leq z\) then \(x \leq z\)
Another Example

- Semi-lattice
 - $V = \{x | x \subseteq \{d_1, d_2, d_3\}\}$
 - $\land = \cap$

- \leq is

Meet Semi-Lattices vs Partially Ordered Sets

- A meet-semilattice is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset.

- Greatest lower bound: $x \land y$ = First common descendant of $x \& y$
- Largest: top element T, if $x \land T = x$ for all x.
- Smallest: bottom element \perp, if $x \land \perp = \perp$ for all x.
Drawing a Semi-Lattice Diagram

- \((x \prec y) \equiv (x \leq y) \land (x \not= y)\)

- A semi-lattice diagram:
 - Set of nodes: set of values
 - Set of edges \(\{(y, x): x < y \text{ and } \neg \exists z \text{ s.t. } (x < z) \land (z < y)\}\)

Summary

Three ways to define a semi-lattice:

- Set of values + meet operator
 - idempotent: \(x \land x = x\)
 - commutative: \(x \land y = y \land x\)
 - associative: \(x \land (y \land z) = (x \land y) \land z\)

- Set of values + partial order with a greatest lower bound for any nonempty subset
 - Reflexive: \(x \leq x\)
 - Antisymmetric: if \(x \leq y\) and \(y \leq x\) then \(x = y\)
 - Transitive: if \(x \leq y\) and \(y \leq z\) then \(x \leq z\)

- A semi-lattice diagram
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements
- Example: Union of definitions
 - For each element
 - `<x_1, x_2>` ≤ `<y_1, y_2>` iff x_1 ≤ y_1 and x_2 ≤ y_2

Descending Chain

- Definition
 - The height of a lattice is the largest number of > relations that will fit in a descending chain.
 - $x_0 > x_1 > ...$
- Height of values in reaching definitions?
- Important property: finite descending chains
II. Transfer Functions

- A family of transfer functions F
- Basic Properties $f : V \to V$
 - Has an identity function
 - $\exists f$ such that $f(x) = x$, for all x.
 - Closed under composition
 - if $f_1, f_2 \in F$, $f_1 \circ f_2 \in F$

Monotonicity: 2 Equivalent Definitions

- A framework (F, V, \land) is monotone iff
 - $x \leq y$ implies $f(x) \leq f(y)$

- Equivalently,
 a framework (F, V, \land) is monotone iff
 - $f(x \land y) \leq f(x) \land f(y)$,
 - meet inputs, then apply f
 - \leq
 - apply f individually to inputs, then meet results
Example

- Reaching definitions: \(f(x) = \text{Gen } U (x - \text{Kill}), \land = U \)
 - Definition 1:
 - Let \(x_1 \leq x_2, \)
 \(f(x_1): \text{Gen } U (x_1 - \text{Kill}) \)
 \(f(x_2): \text{Gen } U (x_2 - \text{Kill}) \)
 - Definition 2:
 - \(f(x_1 \land x_2) = (\text{Gen } U ((x_1 \lor x_2) - \text{Kill})) \)
 \(f(x_1) \land f(x_2) = (\text{Gen } U (x_1 - \text{Kill}) \lor (\text{Gen } U (x_2 - \text{Kill}) \)

Distributivity

- A framework \((F, V, \land)\) is distributive if and only if
 \(f(x \land y) = f(x) \land f(y), \)

 meet input, then apply \(f \) is equal to
 apply the transfer function individually then merge result
Important Note

- **Monotone framework does not mean** that \(f(x) \leq x \)
 - e.g. Reaching definition for two definitions in program
 - suppose: \(f: \text{Gen} = \{d_1\}; \text{Kill} = \{d_2\} \)

III. Properties of Iterative Algorithm

- **Given**

 A monotone data flow framework
 With finite descending chains

- The iterative algorithm where all interior points are initialized to T
 - **Converges**
 - To the Maximum Fixed Point (MFP) solution of equations
Key Concept

- The answer is a set of values for all basic block boundaries: \{ in[b], out[b] | b in the program \}
- We need to prove the invariant:
 Values assigned to the same in[b] or out[b] cannot increase in each iteration of the algorithm
- The algorithm converges if the semilattice has finite descending chains
- Given an initialization of T, the answer is the MFP, because any larger value is not a solution.

Sketch of Inductive Proof

For each IN/OUT of an interior program point:
- Invariant: new value ≤ old value in any step
- Start with T (largest value)
- Proof by induction
 - 1st transfer function or meet operator: new value ≤ old value (T)
 - Meet operation:
 - Assume new inputs ≤ old inputs, new output ≤ old output
 - Transfer function (in a monotone framework)
 - Assume new inputs ≤ old inputs, new output ≤ old output
IV. What Does the Solution Mean?

- IDEAL data flow solution
 - Let \(f_1, ..., f_m : \epsilon F \), \(f_i \) is the transfer function for node \(i \)
 \[
 f_p = f_{n_k} \circ ... \circ f_{n_1}, \text{ } p \text{ is a path through nodes } n_k, ..., n_1
 \]
 \[
 f_p = \text{identify function, if } p \text{ is an empty path}
 \]
 - For each node \(n \): \(f_p \) (boundary value), for all possibly executed paths \(p \), reaching \(n \)
 - Example

 ![Example Diagram]

- Determining all possibly executed paths is undecidable

Meet-Over-Paths MOP

- Err in the conservative direction

- Meet-Over-Paths MOP
 - Assume every edge is traversed
 - For each node \(n \):
 \[
 \text{MOP}(n) = \land f_p \text{ (boundary value), for all paths } p \text{ reaching } n
 \]

- Compare MOP with IDEAL
 - MOP includes more paths than IDEAL
 - MOP = IDEAL \land Result(Unexecuted-Paths)
 - MOP \leq IDEAL
 - MOP is a "smaller" solution, more conservative, safe

- MOP \leq IDEAL
 - Goal: as close to MOP from below as possible
Solving Data Flow Equations

- What is the difference between MOP and MFP of data flow equations?

- Therefore
 - $\text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL}$
 - FP, MFP, MOP are safe
 - If framework is distributive, $\text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL}$

Summary

- A data flow framework
 - Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
 - Transfer functions
 - summarizes each basic block
 - boundary conditions
- Properties of data flow framework:
 - Monotone framework and finite descending chains
 - iterative algorithm converges
 - finds maximum fixed point (MFP)
 - $\text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL}$
 - Distributive framework
 - $\text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL}$