

Lecture 3
Foundation of Data Flow Analysis

I Semi-lattice (set of values, meet operator)
II Transfer functions
III Correctness, precision and convergence
IV Meaning of Data Flow Solution

Reading: Chapter 9.3

I. Purpose of a Framework

• Purpose 1
 – Prove properties of entire family of problems once and for all
 • Will the program converge?
 • What does the solution to the set of equations mean?

• Purpose 2:
 – Aid in software engineering: re-use code
The Data-Flow Framework

• Data-flow problems \((F, V, \land)\) are defined by

 – A semi-lattice

 • domain of values \(V\)

 • meet operator \(\land: V \times V \to V\)

 – A family of transfer functions \(F: V \to V\)

Semi-lattice: Structure of the Domain of Values

• A semi-lattice \(S = \langle a \text{ set of values } V, \text{ a meet operator } \land \rangle\)

• Properties of the meet operator

 – idempotent: \(x \land x = x\)

 – commutative: \(x \land y = y \land x\)

 – associative: \(x \land (y \land z) = (x \land y) \land z\)

• Examples of meet operators?
• Non-examples?
Example of a Semi-Lattice Diagram

- \((V, \wedge) : V = \{x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\}\}, \wedge = U\)

![Diagram of a semi-lattice]

- \(x \wedge y = \text{first common descendant of } x \& y\)
- A meet semi-lattice is bounded if there exists a top element \(T\), such that \(x \wedge T = x\) for all \(x\).
- A bottom element \(\bot\) exists, if \(x \wedge \bot = \bot\) for all \(x\).

Meet Semi-Lattices vs Partially Ordered Sets

- A meet-semilattice is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset.

![Diagram of a semi-lattice]

- Greatest lower bound: \(x \wedge y = \text{First common descendant of } x \& y\)
- Largest: top element \(T\), if \(x \wedge T = x\) for all \(x\).
- Smallest: bottom element \(\bot\), if \(x \wedge \bot = \bot\) for all \(x\).
A Meet Operator Defines a Partial Order

- Partial order of a meet semi-lattice
 \[x \leq y \text{ if and only if } x \land y = x \]

- Meet operator: \(\lor \)

- Properties of meet operator guarantee that \(\leq \) is a partial order

 - Reflexive: \(x \leq x \)

 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)

 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

Drawing a Semi-Lattice Diagram

- \((x < y) \equiv (x \leq y) \land (x \neq y) \)

- A semi-lattice diagram:

 - Set of nodes: set of values

 - Set of edges \(\{ (y, x) : x < y \text{ and } \exists z \text{ s.t. } (x < z) \land (z < y) \} \)
Summary

Three ways to define a semi-lattice:

- Set of values + meet operator
 - idempotent: \(x \land x = x \)
 - commutative: \(x \land y = y \land x \)
 - associative: \(x \land (y \land z) = (x \land y) \land z \)

- Set of values + partial order with a greatest lower bound for any nonempty subset
 - Reflexive: \(x \leq x \)
 - Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 - Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

- A semi-lattice diagram

Another Example

- Semi-lattice
 - \(V = \{ x \mid \text{such that } x \subseteq \{d_1, d_2, d_3\}\} \)
 - \(\land = \cap \)

\[
\begin{array}{ccc}
\{d, d, d\} & \{d, d\} & \{d, d\} \\
(T) & (T) & (T) \\
\{d, d\} & \{d, d\} & \{d, d\} \\
\{d\} & \{d\} & \{d\} \
\end{array}
\]

- \(\subseteq \) is
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements
- Example: Union of definitions
 - For each element
 - $<x_1, x_2> \leq <y_1, y_2>$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$

\[
\begin{align*}
def1 & \quad \text{def2} \\
\{d_1\} & \quad \{d_2\} \\
\{d_1\} & \quad \{d_2\}
\end{align*}
\[
\begin{align*}
def1 \times \text{def2} & \\
\{d_1\} & \quad \{d_2\} \\
\{d_1\} & \quad \{d_2\}
\end{align*}
\]

Descending Chain

- Definition
 - The **height** of a lattice is the largest number of $>$ relations that will fit in a descending chain.
 - $x_0 > x_1 > ...$
- Height of values in reaching definitions?
- Important property: finite descending chains
II. Transfer Functions

- A family of transfer functions F
- Basic Properties $f: V \rightarrow V$
 - Has an identity function
 - $\exists f$ such that $f(x) = x$, for all x.
 - Closed under composition
 - if $f_1, f_2 \in F$, $f_1 \circ f_2 \in F$

Monotonicity: 2 Equivalent Definitions

- A framework (F, V, \vee) is monotone iff
 - $x \leq y$ implies $f(x) \leq f(y)$

- Equivalently,
 a framework (F, V, \vee) is monotone iff
 - $f(x \vee y) \leq f(x) \vee f(y)$,
 - meet inputs, then apply f
 \leq
 apply f individually to inputs, then meet results
Example

- **Reaching definitions:** \(f(x) = \text{Gen } U (x - \text{ Kill}) \), \(\land = U \)
 - **Definition 1:**
 - Let \(x_1 \leq x_2 \),
 \(f(x_1): \text{Gen } U (x_1 - \text{ Kill}) \)
 \(f(x_2): \text{Gen } U (x_2 - \text{ Kill}) \)
 - **Definition 2:**
 - \(f(x_1 \land x_2) = (\text{Gen } U ((x_1 U x_2) - \text{ Kill})) \)
 - \(f(x_1) \land f(x_2) = (\text{Gen } U (x_1 - \text{ Kill})) U (\text{Gen } U (x_2 - \text{ Kill})) \)

Distributivity

- A framework \((F, V, \land) \) is distributive if and only if
 \(f(x \land y) = f(x) \land f(y) \),
 meet input, then apply \(f \) is equal to
 apply the transfer function individually then merge result
Important Note

- Monotone framework does not mean that \(f(x) \leq x \)
 - e.g. Reaching definition for two definitions in program
 - suppose: \(f: \text{Gen} = \{d_1\}; \text{Kill} = \{d_2\} \)

III. Properties of Iterative Algorithm

- Given
 A monotone data flow framework
 With finite descending chains

- The iterative algorithm where all interior points are initialized to \(T \)
 - Converges
 - To the Maximum Fixed Point (MFP) solution of equations
Proof

- The answer is a set of values for all basic block boundaries:
 \{ \text{in}[b], \text{out}[b] \mid b \text{ in the program} \}
- Invariant:
 Values assigned to the same in[b] or out[b] cannot increase in each
 iteration of the algorithm
- The algorithm converges if the semilattice has finite descending
 chains
- The answer is the MFP, because any larger value is not a solution.

Sketch of Inductive Proof

For each IN/OUT of an interior program point:
- Invariant: new value ≤ old value in any step
- Start with T (largest value)
- Proof by induction
 - 1st transfer function or meet operator: new value ≤ old value (T)
 - Meet operation:
 • Assume new inputs ≤ old inputs, new output ≤ old output
 - Transfer function (in a monotone framework)
 • Assume new inputs ≤ old inputs, new output ≤ old output
IV. What Does the Solution Mean?

- **IDEAL data flow solution**
 - Let $f_1, ..., f_m : F$, f_i is the transfer function for node i

 \[f_p = f_n \circ ... \circ f_1, \text{p is a path through nodes } n_1, ..., n_k \]

 \[f_p = \text{identify function, if p is an empty path} \]

 - For each node n: f_p (boundary value), for all possibly executed paths p, reaching n
 - Example

 ![Example Diagram]

- Determining all possibly executed paths is undecidable

Meet-Over-Paths MOP

- **Err in the conservative direction**

- **Meet-Over-Paths MOP**
 - Assume every edge is traversed
 - For each node n:
 - $MOP(n) = f_p$ (boundary value), for all paths p, reaching n

- **Compare MOP with IDEAL**
 - MOP includes more paths than IDEAL
 - $MOP = IDEAL \land \text{Result(Unexecuted-Paths)}$
 - $MOP \leq IDEAL$
 - MOP is a "smaller" solution, more conservative, safe

- **MOP \leq IDEAL**
 - Goal: as close to MOP from below as possible
Solving Data Flow Equations

- What is the difference between MOP and MFP of data flow equations?

• Therefore
 - FP ≤ MFP ≤ MOP ≤ IDEAL
 - FP, MFP, MOP are safe
 - If framework is distributive, FP ≤ MFP = MOP ≤ IDEAL

Summary

- A data flow framework
 - Semi-lattice
 • set of values (top)
 • meet operator
 • finite descending chains?
 - Transfer functions
 • summarizes each basic block
 • boundary conditions
- Properties of data flow framework:
 - Monotone framework and finite descending chains
 ⇒ iterative algorithm converges
 ⇒ finds maximum fixed point (MFP)
 ⇒ FP ≤ MFP ≤ MOP ≤ IDEAL
 - Distributive framework
 ⇒ FP ≤ MFP = MOP ≤ IDEAL