Lecture 3
Foundation of Data Flow Analysis

I Semi-lattice (set of values, meet operator)
II Transfer functions
III Correctness, precision and convergence
IV Meaning of Data Flow Solution

Reading: Chapter 9.3

I. Purpose of a Framework

• Purpose 1
 – Prove properties of entire family of problems once and for all
 • Will the program converge?
 • What does the solution to the set of equations mean?

• Purpose 2:
 – Aid in software engineering: re-use code
The Data-Flow Framework

- Data-flow problems \((F, V, \wedge)\) are defined by
 - A semi-lattice
 - domain of values \(V\)
 - meet operator \(\wedge: V \times V \rightarrow V\)
 - A family of transfer functions \(F: V \rightarrow V\)

Semi-lattice: Structure of the Domain of Values

- A semi-lattice \(S = \langle\text{a set of values } V, \text{ a meet operator } \wedge\rangle\)
- Properties of the meet operator
 - idempotent: \(x \wedge x = x\)
 - commutative: \(x \wedge y = y \wedge x\)
 - associative: \(x \wedge (y \wedge z) = (x \wedge y) \wedge z\)

- Examples of meet operators?
- Non-examples?
Example of a Semi-Lattice Diagram

- \((V, \wedge) : V = \{x \mid x \subseteq \{d_1, d_2, d_3\}\}, \wedge = U\)

```

\[ (T) \]
\[
\begin{array}{ccc}
  & (d_1) & (d_2) \\
(d_3) & \downarrow & \downarrow \\
(d_1, d_3) & (d_2, d_3) & (d_1, d_2, d_3) \\
\end{array}
\]

\((\bot)\)
```

- \(x \wedge y = \text{first common descendant of } x \& y\) \(\text{important}\)
- A meet semi-lattice is bounded if there exists a top element \(T\), such that \(x \wedge T = x\) for all \(x\).
- A bottom element \(\bot\) exists, if \(x \wedge \bot = \bot\) for all \(x\).

Meet Semi-Lattices vs Partially Ordered Sets

- A meet-semilattice is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset.

```

\[ (T) \]
\[
\begin{array}{ccc}
  & (d_1) & (d_2) \\
(d_3) & \downarrow & \downarrow \\
(d_1, d_3) & (d_2, d_3) & (d_1, d_2, d_3) \\
\end{array}
\]

\((\bot)\)
```

- Greatest lower bound: \(x \wedge y = \text{first common descendant of } x \& y\)
- Largest: top element \(T\), if \(x \wedge T = x\) for all \(x\).
- Smallest: bottom element \(\bot\), if \(x \wedge \bot = \bot\) for all \(x\).
A Meet Operator Defines a Partial Order

- Partial order of a meet semi-lattice

\[x \leq y \text{ if and only if } x \land y = x \]

\[\text{path: } \begin{array}{c} y \\ \downarrow \\ x \end{array} \equiv (x \land y = x) \equiv (x \leq y) \]

- Meet operator: \(\land \)

Partial order \(\leq \):

- Reflexive: \(x \leq x \)
- Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
- Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

Properties of meet operator guarantee that \(\leq \) is a partial order:

\[(x \land y) = x \]

\[(x \leq y) \]

Drawing a Semi-Lattice Diagram

- \((x < y) \equiv (x \leq y) \land (x \neq y)\)

- A semi-lattice diagram:
 - Set of nodes: set of values
 - Set of edges \(\{(y, x): x < y \text{ and } \exists z \text{ s.t. } (x \land z) \land (z < y)\} \)
Summary

Three ways to define a semi-lattice:

• Set of values + meet operator
 – idempotent: \(x \land x = x \)
 – commutative: \(x \land y = y \land x \)
 – associative: \(x \land (y \land z) = (x \land y) \land z \)

• Set of values
 + partial order with a greatest lower bound for any nonempty subset
 – Reflexive: \(x \leq x \)
 – Antisymmetric: if \(x \leq y \) and \(y \leq x \) then \(x = y \)
 – Transitive: if \(x \leq y \) and \(y \leq z \) then \(x \leq z \)

• A semi-lattice diagram

Another Example

• Semi-lattice
 – \(V = \{ x \mid \text{such that } x \subseteq \{ d_1, d_2, d_3 \} \} \)
 – \(\land = \cap \)
One Element at a Time

- A semi-lattice for data flow problems can get quite large: 2^n elements for n var/definition
- A useful technique:
 - define semi-lattice for 1 element
 - product of semi-lattices for all elements
- Example: Union of definitions
 - For each element

 \[
 \begin{align*}
 \text{def1} & \quad \text{def2} \\
 \emptyset & \quad \emptyset \\
 (d_1) & \quad (d_2)
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{def1 x def2} \\
 \emptyset & \quad \emptyset \\
 (d_1,\emptyset) & \quad (\emptyset,d_2) \\
 (d_1,d_2)
 \end{align*}
 \]

 - $\langle x_1, x_2 \rangle \leq \langle y_1, y_2 \rangle$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$

Descending Chain

- Definition
 - The height of a lattice is the largest number of $>$ relations that will fit in a descending chain.

 \[
 x_0 \succ x_1 \succ \ldots
 \]

- Height of values in reaching definitions?

- Important property: finite descending chains
II. Transfer Functions

• A family of transfer functions \(F \)
• Basic Properties \(f : V \rightarrow V \)
 – Has an identity function
 • \(\exists f \) such that \(f(x) = x \), for all \(x \).
 – Closed under composition
 • if \(f_1, f_2 \in F \), \(f_1 \circ f_2 \in F \)

Monotonicity: 2 Equivalent Definitions

• A framework \((F, V, \wedge) \) is monotone iff
 – \(x \leq y \) implies \(f(x) \leq f(y) \)

• Equivalently,
 a framework \((F, V, \wedge) \) is monotone iff
 – \(f(x \wedge y) \leq f(x) \wedge f(y) \),
 – meet inputs, then apply \(f \)
 \(\leq \)
 – apply \(f \) individually to inputs, then meet results
Example

- Reaching definitions: \(f(x) = \text{Gen } U (x - \text{Kill}), \wedge = U \)
 - Definition 1:
 - Let \(x_1 \leq x_2 \).
 \[f(x_1): \text{Gen } U (x_1 - \text{Kill}) \]
 \[f(x_2): \text{Gen } U (x_2 - \text{Kill}) \]
 - Definition 2:
 - \(f(x_1 \wedge x_2) = (\text{Gen } U ((x_1 \cup x_2) - \text{Kill})) \)
 \[f(x_1) \wedge f(x_2) = (\text{Gen } U (x_1 - \text{Kill})) \cup (\text{Gen } U (x_2 - \text{Kill})) \]

Distributivity

- A framework \((F, V, \wedge) \) is distributive if and only if
 \[
 f(x \wedge y) = f(x) \wedge f(y),
 \]
 meet input, then apply \(f \) is equal to apply the transfer function individually then merge result
Important Note

• Monotone framework does not mean that \(f(x) \leq x \)
 – e.g. Reaching definition for two definitions in program
 – suppose: \(f: \text{Gen} = \{d_1\}; \text{Kill} = \{d_2\} \)

III. Properties of Iterative Algorithm

• Given:
 \(\land \) and monotone data flow framework
 Finite descending chain
 \(\Rightarrow \) Converges

• Initialization of interior points to \(T \)
 \(\Rightarrow \) Maximum Fixed Point (MFP) solution of equations
Behavior of iterative algorithm (intuitive)

For each IN/OUT of an interior program point:
- Invariant: new value ≤ old value in any step
- Start with T (largest value)
- Proof by induction
 - 1st transfer function or meet operator: new value ≤ old value (T)
 - Meet operation:
 - Assume new inputs ≤ old inputs, new output ≤ old output
 - Transfer function (in a monotone framework)
 - Assume new inputs ≤ old inputs, new output ≤ old output
- Algorithm iterates until equations are satisfied
- Values do not come down unless some constraints drive them down.
- Therefore, finds the largest solution that satisfies the equations

IV. What Does the Solution Mean?

- IDEAL data flow solution
 - Let \(f_1, ..., f_m : \in F, f_i \) is the transfer function for node \(i \)
 \[f_p = f_n \circ ... \circ f_1, \ p \text{ is a path through nodes } n_1, ..., n_k \]
 \[f_p = \text{identify function, if } p \text{ is an empty path} \]
 - For each node \(n: \land f_p \) (boundary value), for all possibly executed paths \(p \) reaching \(n \)
 - Example

 ![Decision Diagram](image)

 - Determining all possibly executed paths is undecidable
Meet-Over-Paths MOP

- Err in the conservative direction

- Meet-Over-Paths MOP
 - Assume every edge is traversed
 - For each node n:
 - $\text{MOP}(n) = \land f_{p_i}$ (boundary value), for all paths p_i reaching n

- Compare MOP with IDEAL
 - MOP includes more paths than IDEAL
 - $\text{MOP} = \text{IDEAL} \land \text{Result(Unexecuted-Paths)}$
 - $\text{MOP} \leq \text{IDEAL}$
 - MOP is a “smaller” solution, more conservative, safe

- $\text{MOP} \leq \text{IDEAL}$
 - Goal: as close to MOP from below as possible

Solving Data Flow Equations

- What is the difference between MOP and MFP of data flow equations?

- Therefore
 - $\text{FP} \leq \text{MFP} \leq \text{MOP} \leq \text{IDEAL}$
 - FP, MFP, MOP are safe
 - If framework is distributive, $\text{FP} \leq \text{MFP} = \text{MOP} \leq \text{IDEAL}$
Summary

- **A data flow framework**
 - Semi-lattice
 - set of values (top)
 - meet operator
 - finite descending chains?
 - Transfer functions
 - summarizes each basic block
 - boundary conditions

- **Properties of data flow framework**:
 - Monotone framework and finite descending chains
 - iterative algorithm converges
 - finds maximum fixed point (MFP)
 - $FP \leq MFP \leq MOP \leq IDEAL$
 - Distributive framework
 - $FP \leq MFP = MOP \leq IDEAL$