Lecture 2
Introduction to Data Flow Analysis

I. Introduction
II. Example: Reaching definition analysis
III. Example: Liveness analysis
IV. A General Framework
 (Theory in next lecture)

Reading: Chapter 9.2
I. Compiler Organization

- Program
 - Front end
 - Abstract Syntax Tree
 - High-level IR
 - High-level optimization
 - Parallelization
 - Loop transformations
 - Machine-Independent Intermediate Representations
 - Low-level IR
 - Low-level optimization
 - Redundancy elimination
 - Code generation
 - Machine code
 - Register allocation
 - Instruction scheduling
Flow Graph

• Basic block = a maximal sequence of consecutive instructions s.t.
 – flow of control only enters at the beginning
 – flow of control can only leave at the end
 (no halting or branching except perhaps at end of block)

• Flow Graphs
 – Nodes: basic blocks
 – Edges
 • $B_i \rightarrow B_j$, iff B_j can follow B_i immediately in execution
What is Data Flow Analysis?

- **Data flow analysis:**
 - Flow-sensitive: sensitive to the control flow in a function
 - Intraprocedural analysis
- **Examples of optimizations:**
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Value of x?
Which “definition” defines x?
Is the definition still meaningful (live)?
Static Program vs. Dynamic Execution

- **Statically**: Finite program
- **Dynamically**: Can have infinitely many possible execution paths
- **Data flow analysis abstraction**:
 - For each point in the program:
 - Combines information of all the instances of the same program point.
- **Example of a data flow question**:
 - Which definition defines the value used in statement “b = a”?
Reaching Definitions

• Every assignment is a definition
• A definition d reaches a point p if there exists path from the point immediately following d to p such that d is not killed (overwritten) along that path.
• Problem statement
 – For each point in the program, determine if each definition in the program reaches the point
 – A bit vector per program point, vector-length = #defs
Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 - Transfer function f_b relates in[b] and out[b], for same b
 - Effect of flow of control:
 - relates out[b_1], in[b_2] if b_1 and b_2 are adjacent
- Find a solution to the equations
Effects of a Statement

\[\text{in[B0]} \]

\begin{align*}
\text{d0: } y &= 3 & f_{d0} \\
\text{d1: } x &= 10 & f_{d1} \\
\text{d2: } y &= 11 & f_{d2}
\end{align*}

\[\text{out[B0]} \]

• \(f_s \): A transfer function of a statement
 – abstracts the execution with respect to the problem of interest
• For a statement \(s \) (d: \(x = y + z \))
 \[\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s]) \]
 – \textbf{Gen}[s]: definitions generated: \(\text{Gen}[s] = \{d\} \)
 – \textbf{Propagated} definitions: \(\text{in}[s] - \text{Kill}[s] \),
 where \(\text{Kill}[s] \) = set of all other defs to \(x \) in the rest of program
Effects of a Basic Block

- Transfer function of a statement s:
 - $\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s]-\text{Kill}[s])$

- Transfer function of a basic block B:
 - Composition of transfer functions of statements in B
 - $\text{out}[B] = f_B(\text{in}[B])$
 - $= f_{d1}f_{d0}(\text{in}[B])$
 - $= \text{Gen}[d_1] \cup (\text{Gen}[d_0] \cup (\text{in}[B]-\text{Kill}[d_0]))-\text{Kill}[d_1])$
 - $= (\text{Gen}[d_1] \cup (\text{Gen}[d_0] - \text{Kill}[d_1])) \cup \text{in}[B] - (\text{Kill}[d_0] \cup \text{Kill}[d_1])$
 - $= \text{Gen}[B] \cup (\text{in}[B] - \text{Kill}[B])$

- $\text{Gen}[B]$: locally exposed definitions (available at end of bb)
- $\text{Kill}[B]$: set of definitions killed by B

\[\begin{align*}
\text{in}[B0] & \\
\begin{array}{c}
d0: \ y = 3 \\
d1: \ x = 10 \\
\end{array} & \\
\downarrow & \\
\text{out}[B0] & \\
\end{align*}\]
Effects of the Edges (acyclic)

- **Join node**: a node with multiple predecessors
- **meet** operator (\wedge): U
 \[
 \text{in}[b] = \text{out}[p_1] U \text{out}[p_2] U \ldots U \text{out}[p_n], \text{ where } \\
p_1, \ldots, p_n \text{ are all predecessors of } b
 \]
Cyclic Graphs

- Equations still hold
 - \(\text{out}[b] = f_b(\text{in}[b]) \)
 - \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup \ldots \cup \text{out}[p_n], \; p_1, \ldots, p_n \; \text{pred.} \)
- Find: fixed point solution
Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
out[Entry] = ∅

// Initialization for iterative algorithm
For each basic block B other than Entry
out[B] = ∅

// iterate
While (Changes to any out[] occur) {
 For each basic block B other than Entry {
 in[B] = U (out[p]), for all predecessors p of B
 }
}
Summary of Reaching Definitions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reaching Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
</tr>
<tr>
<td>Transfer function (f_b(x))</td>
<td>forward: out[b] = (f_b(\text{in}[b])) (f_b(x) = \text{Gen}_b \cup (x - \text{Kill}_b)) (\text{Gen}_b): definitions in b (\text{Kill}_b): killed defs</td>
</tr>
<tr>
<td>Meet Operation</td>
<td>in[b] = (\cup) out[predecessors]</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = (\emptyset)</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[(b)] = (\emptyset)</td>
</tr>
</tbody>
</table>
III. Live Variable Analysis

• Definition
 – A variable v is **live** at point p if
 • the value of v is used along some path in the flow graph starting at p.
 – Otherwise, the variable is **dead**.

• Problem statement
 – For each basic block
 • determine if each variable is live in each basic block
 – Size of bit vector: one bit for each variable
Effects of a Basic Block (Transfer Function)

- **Observation:** Trace uses back to the definitions

 ![Diagram](image)

- **Direction:** backward: \(\text{in}[b] = f_b(\text{out}[b]) \)

- **Transfer function** for statement \(s: x = y + z \)
 - generate live variables: \(\text{Use}[s] = \{y, z\} \)
 - propagate live variables: \(\text{out}[s] - \text{Def}[s], \text{Def}[s] = x \)
 - \(\text{in}[s] = \text{Use}[s] \cup (\text{out}(s) - \text{Def}[s]) \)

- **Transfer function** for basic block \(b \):
 - \(\text{in}[b] = \text{Use}[b] \cup (\text{out}(b) - \text{Def}[b]) \)
 - \(\text{Use}[b] \), set of locally exposed uses in \(b \), uses not covered by definitions in \(b \)
 - \(\text{Def}[b] \), set of variables defined in \(b \).
Across Basic Blocks

- **Meet operator** (\wedge):
 - \(\text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup \ldots \cup \text{in}[s_n] \), \(s_1, \ldots, s_n \) are successors of \(b \)
- **Boundary condition:**
Example
Liveness: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
in[Exit] = ∅

// Initialization for iterative algorithm
For each basic block B other than Exit
in[B] = ∅

// iterate
While (Changes to any in[] occur) {
 For each basic block B other than Exit {
 out[B] = ∪ (in[s]), for all successors s of B
 }
}
IV. Framework

<table>
<thead>
<tr>
<th></th>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
<td>Sets of variables</td>
</tr>
<tr>
<td>Direction</td>
<td>forward:</td>
<td>backward:</td>
</tr>
<tr>
<td></td>
<td>out[b] = (f_b(\text{in}[b]))</td>
<td>in[b] = (f_b(\text{out}[b]))</td>
</tr>
<tr>
<td></td>
<td>in[b] = (\land \text{out}[\text{pred}(b)])</td>
<td>out[b] = (\land \text{in}[\text{succ}(b)])</td>
</tr>
<tr>
<td>Transfer function</td>
<td>(f_b(x) = \text{Gen}_b \cup (x - \text{Kill}_b))</td>
<td>(f_b(x) = \text{Use}_b \cup (x - \text{Def}_b))</td>
</tr>
<tr>
<td>Meet Operation ((\land))</td>
<td>(\cup)</td>
<td>(\cup)</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = (\emptyset)</td>
<td>in[exit] = (\emptyset)</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[b] = (\emptyset)</td>
<td>in[b] = (\emptyset)</td>
</tr>
</tbody>
</table>
Thought Problem 1. “Must-Reach” Definitions

• A definition $D (a = b + c)$ must reach point P iff
 – D appears at least once along all paths leading to P
 – a is not redefined along any path after last appearance of D and before P

• How do we formulate the data flow algorithm for this problem?
Problem 2: A legal solution to (May) Reaching Def?

- Will the worklist algorithm generate this answer?
Problem 3. What are the algorithm properties?

- Correctness

- Precision: how good is the answer?

- Convergence: will the analysis terminate?

- Speed: how long does it take?