Lecture 2

Introduction to Data Flow Analysis

I. Introduction
II. Example: Reaching definition analysis
III. Example: Liveness analysis
IV. A General Framework
 (Theory in next lecture)

Reading: Chapter 9.2

I. Compiler Organization

Program
Front end
Abstract Syntax Tree

High-level IR
High-level optimization
Parallelization
Loop transformations

Machine-Independent Intermediate Representations

Low-level IR
Low-level optimization
Redundancy elimination

Code generation
Machine code
Register allocation
Instruction scheduling
Flow Graph

- Basic block = a maximal sequence of consecutive instructions s.t.
 - flow of control only enters at the beginning
 - flow of control can only leave at the end
 (no halting or branching except perhaps at end of block)

- Flow Graphs
 - Nodes: basic blocks
 - Edges
 - $B_i \rightarrow B_j$, iff B_j can follow B_i immediately in execution

What is Data Flow Analysis?

- Data flow analysis:
 - Flow-sensitive: sensitive to the control flow in a function
 - Intraprocedural analysis
- Examples of optimizations:
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Value of x?
Which "definition" defines x?
Is the definition still meaningful (live)?
Static Program vs. Dynamic Execution

- **Statically**: Finite program
- **Dynamically**: Can have infinitely many possible execution paths
- **Data flow analysis abstraction**: For each point in the program, combines information of all the instances of the same program point.
- **Example of a data flow question**: Which definition defines the value used in statement "b = a"?

Reaching Definitions

- Every assignment is a definition
- A definition \(d\) reaches a point \(p\) if there exists path from the point immediately following \(d\) to \(p\) such that \(d\) is not killed (overwritten) along that path.
- Problem statement
 - For each point in the program, determine if each definition in the program reaches the point
 - A bit vector per program point, vector-length = \#defs
Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 - Transfer function f_b relates in[b] and out[b], for some b
 - Effect of flow of control:
 - relates out[b₁], in[b₂] if b₁ and b₂ are adjacent
- Find a solution to the equations

Effects of a Statement

- f_s: A transfer function of a statement
 - abstracts the execution with respect to the problem of interest
- For a statement s (d: $x = y + z$)
 - $\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s])$
 - $\text{Gen}[s]$: definitions generated: $\text{Gen}[s] = \{d\}$
 - Propagated definitions: $\text{in}[s] - \text{Kill}[s]$, where $\text{Kill}[s]$ = set of all other defs to x in the rest of program
Effects of a Basic Block

- Transfer function of a statement s:
 - $\text{out}[s] = f_s(in[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s])$

- Transfer function of a basic block B:
 - Composition of transfer functions of statements in B
 - $\text{out}[B] = f_B(in[B])$
 - $= f_d_1 f_d_0 \cdot in[B]$
 - $= \text{Gen}[d_1] \cup \text{Gen}[d_0] \cup (\text{Gen}[d_0] - \text{Kill}[d_1])$
 - $= \text{Gen}[d_1] \cup \text{Gen}[d_0] \cup \text{Kill}[d_1]$
 - $= \text{Gen}[B] \cup \text{in}[B] - \text{Kill}[B]$

 - $\text{Gen}[B]$ locally exposed definitions (available at end of bb)
 - $\text{Kill}[B]$ set of definitions killed by B

Effects of the Edges (acyclic)

- Join node: a node with multiple predecessors
- meet operator (\land): U
 - $\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup ... \cup \text{out}[p_n]$, where $p_1, ..., p_n$ are all predecessors of b
Cyclic Graphs

- Equations still hold
 - \(\text{out}[b] = f_b(\text{in}[b]) \)
 - \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup ... \cup \text{out}[p_n], \ p_1, ..., p_n \text{ pred.} \)
- Find: fixed point solution

Reaching Definitions: Iterative Algorithm

input: control flow graph \(\text{CFG} = (N, E, \text{Entry}, \text{Exit}) \)

// Boundary condition
\[\text{out}[\text{Entry}] = \emptyset \]

// Initialization for iterative algorithm
For each basic block \(B \) other than \(\text{Entry} \)
\[\text{out}[B] = \emptyset \]

// iterate
While (Changes to any \(\text{out[]} \) occur) {
 For each basic block \(B \) other than \(\text{Entry} \) {
 \[\text{in}[B] = \cup \text{out}[p], \text{ for all predecessors } p \text{ of } B \]
 \[\text{out}[B] = f_n(\text{in}[B]) \quad \text{// out}[B]=\text{gen}[B]\cup(\text{in}[B]-\text{kill}[B]) \]
 }
}
Summary of Reaching Definitions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reaching Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets of definitions</td>
<td></td>
</tr>
<tr>
<td>Transfer function $f_b(x)$</td>
<td>$\text{forward: } \text{out}[b] = f_b(\text{in}[b])$</td>
</tr>
<tr>
<td></td>
<td>$f_b(x) = \text{Gen}_b \cup (x - \text{Kill}_b)$</td>
</tr>
<tr>
<td>Meet Operation</td>
<td>$\text{in}[b] = \cup \text{out[predecessors]}$</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>$\text{out}[\text{entry}] = \emptyset$</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>$\text{out}[b] = \emptyset$</td>
</tr>
</tbody>
</table>

III. Live Variable Analysis

- **Definition**
 - A variable v is **live** at point p if
 - the value of v is used along some path in the flow graph starting at p.
 - Otherwise, the variable is **dead**.

- **Problem statement**
 - For each basic block
 - determine if each variable is live in each basic block
 - Size of bit vector: one bit for each variable
Effects of a Basic Block (Transfer Function)

- Observation: Trace uses back to the definitions

 def

 def

 def

 usd

 example:

 in[b] = f_b(out[b])

 Direction: backward: \(\text{in[b]} = f_b(\text{out[b]}) \)

- Transfer function for statement \(s: x = y + z \)
 - generate live variables: \(\text{Use}[s] = \{y, z\} \)
 - propagate live variables: \(\text{out}[s] - \text{Def}[s], \text{Def}[s] = x \)
 - \(\text{in}[s] = \text{Use}[s] \cup (\text{out}(s) - \text{Def}[s]) \)

- Transfer function for basic block \(b: \)
 - \(\text{in}[b] = \text{Use}[b] \cup (\text{out}(b) - \text{Def}[b]) \)
 - \(\text{Use}[b] \), set of locally exposed uses in \(b \), uses not covered by definitions in \(b \)
 - \(\text{Def}[b] \), set of variables defined in \(b \).

Across Basic Blocks

- Meet operator (\(\land \)):
 - \(\text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup \ldots \cup \text{in}[s_n], s_1, ..., s_n \) are successors of \(b \)

- Boundary condition:
Liveness: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
in[Exit] = ∅

// Initialization for iterative algorithm
For each basic block B other than Exit
in[B] = ∅

// iterate
While (Changes to any in[] occur) {
 For each basic block B other than Exit {
 out[B] = ∪ (in[s]), for all successors s of B
 }
}
IV. Framework

<table>
<thead>
<tr>
<th></th>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
<td>Sets of variables</td>
</tr>
<tr>
<td>Direction</td>
<td>forward:</td>
<td>backward:</td>
</tr>
<tr>
<td></td>
<td>in[b] = (f_b\text{-in}[b])</td>
<td>out[b] = (f_b\text{-out}[b])</td>
</tr>
<tr>
<td></td>
<td>out[b] = (\land \text{out}[\text{pred}(b)])</td>
<td>in[b] = (\land \text{in}[\text{succ}(b)])</td>
</tr>
<tr>
<td>Transfer function</td>
<td>(f_b(x) = \text{Gen}_b \cup (x - \text{Kill}_b))</td>
<td>(f_b(x) = \text{Use}_b \cup (x - \text{Def}_b))</td>
</tr>
<tr>
<td>Meet Operation ((\land))</td>
<td>(\cup)</td>
<td>(\cup)</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = (\emptyset)</td>
<td>in[exit] = (\emptyset)</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[b] = (\emptyset)</td>
<td>in[b] = (\emptyset)</td>
</tr>
</tbody>
</table>

Thought Problem 1. "Must-Reach" Definitions

- A definition \(D (a = b+c) \) must reach point \(P \) iff
 - \(D \) appears at least once along on all paths leading to \(P \)
 - \(a \) is not redefined along any path after last appearance of \(D \) and before \(P \)
- How do we formulate the data flow algorithm for this problem?
Problem 2: A legal solution to (May) Reaching Def?

Will the worklist algorithm generate this answer?

Problem 3. What are the algorithm properties?

- Correctness

- Precision: how good is the answer?

- Convergence: will the analysis terminate?

- Speed: how long does it take?