Lecture 2

Introduction to Data Flow Analysis

I. Introduction
II. Example: Reaching definition analysis
III. Example: Liveness analysis
IV. A General Framework
 (Theory in next lecture)

Reading: Chapter 9.2

Overview of Lectures 2-5

- High-level programming languages generate a lot of redundancy
- Many useful optimizations independently developed originally
 - Constant propagation, common subexpressions,
 loop invariant code motion, dead code elimination
- Formulate individual optimizations in the same DataFlow framework:
 equations with respect to nodes in a graph
 - Theory: prove properties on the framework
 - Software engineering:
 implement / debug / optimize framework once
- Partial redundancy elimination (PRE)
 - Subsumes multiple optimizations by setting up 4 DataFlow problems
- Practice today:
 - Many compilers use SSA (static single assignment) -
 an abstraction on top of dataflow
 - Idea to be covered by the homework
 - Useful for many optimizations, but cannot naturally support PRE
- Plan: L2: basic examples; L3: theory; L4: full examples; L5: PRE
I. Compiler Organization

Flow Graph

- Basic block = a maximal sequence of consecutive instructions s.t.
 - flow of control only enters at the beginning
 - flow of control can only leave at the end
 (no halting or branching except perhaps at end of block)

- Flow Graphs
 - Nodes: basic blocks
 - Edges
 - $B_i \rightarrow B_j$ iff B_j can follow B_i immediately in execution
What is Data Flow Analysis?

- **Data flow analysis**:
 - Flow-sensitive: sensitive to the control flow in a function
 - Intraprocedural analysis

- **Examples of optimizations**:
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Static Program vs. Dynamic Execution

- **Statically**: Finite program
- **Dynamically**: Can have infinitely many possible execution paths

- **Data flow analysis abstraction**:
 - For each point in the program: combines information of all the instances of the same program point.

- **Example of a data flow question**:
 - Which definition defines the value used in statement "b = a"?

Reaching Definitions

- Every assignment is a definition
- A definition \(d \) reaches a point \(p \)
 if there exists a path from the point immediately following \(d \) to \(p \)
 such that \(d \) is not killed (overwritten) along that path.

Problem statement
- For each point in the program, determine if each definition in the program reaches the point
- A bit vector per program point, vector-length = \#defs

Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in\([b]\) and out\([b]\) for all basic blocks \(b\)
 - Effect of code in basic block:
 - Transfer function \(f_b \) relates in\([b]\) and out\([b]\), for same \(b\)
 - Effect of flow of control:
 - relates out\([b_1]\), in\([b_2]\) if \(b_1\) and \(b_2\) are adjacent
- Find a solution to the equations
Effects of a Statement

\[
\text{in}[B0] = \begin{cases}
 d0: & x = 10 \\
 d1: & y = 3 \\
 d2: & y = 11
\end{cases} \]

\[
\text{out}[B0] = \begin{cases}
 f_{d0} \\
 f_{d1} \\
 f_{d2}
\end{cases}
\]

- \(f_s \): A transfer function of a statement
 - abstracts the execution with respect to the problem of interest
- For a statement \(s (d: x = y + z) \)
 \[
 \text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s]\cdot \text{Kill}[s])
 \]
 - \text{Gen}[s]: definitions generated: \(\text{Gen}[s] = \{d\} \)
 - \text{Propagated} definitions: \(\text{in}[s]\cdot \text{Kill}[s] \)
 where \(\text{Kill}[s]\)-set of all other defs to \(x \) in the rest of program

Effects of a Basic Block

\[
\text{in}[B0] = \begin{cases}
 d0: & x = 10 \\
 d1: & y = 3
\end{cases} \]

\[
\text{out}[B0] = \begin{cases}
 f_{d0} \\
 f_{d1}
\end{cases} \]

\[f_B = f_{d1}\cdot f_{d0} \]

- Transfer function of a statement \(s \):
 - \(\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s]\cdot \text{Kill}[s]) \)
- Transfer function of a basic block \(B \):
 - Composition of transfer functions of statements in \(B \)
 - \(\text{out}[B] = f_B(\text{in}[B]) \)

\[= \text{Gen}[d_i] \cup (\text{Gen}[d_i] \cup (\text{in}[B]\cdot \text{Kill}[d_i])) - \text{Kill}[d_i]) \]
\[= (\text{Gen}[d_i] \cup (\text{Gen}[d_i] - \text{Kill}[d_i])) \cup \text{in}[B] - (\text{Kill}[d_i] \cup \text{Kill}[d_i]) \]
\[= \text{Gen}[B] \cup (\text{in}[B] - \text{Kill}[B]) \]

- \text{Gen}[B]: locally exposed definitions (available at end of bb)
- \text{Kill}[B]: set of definitions killed by \(B \)
Effects of the Edges (acyclic)

- **Join node**: a node with multiple predecessors
- **meet operator** (\cap): U

 $in[b] = out[p_1] \cup out[p_2] \cup ... \cup out[p_n]$, where $p_1, ..., p_n$ are all predecessors of b

Cyclic Graphs

- Equations still hold
 - $out[b] = f_b(in[b])$
 - $in[b] = out[p_1] \cup out[p_2] \cup ... \cup out[p_n]$, $p_1, ..., p_n$ pred.
- Find: fixed point solution
Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
out[Entry] = Ø

// Initialization for iterative algorithm
For each basic block B other than Entry
out[B] = Ø

// iterate
While (Changes to any out[] occur) {
For each basic block B other than Entry {
in[B] = \(\bigcup \) (out[p]), for all predecessors p of B
out[B] = \(f_B \) (in[B]) // out[B]=\(\text{gen}[B] \cup (\text{in}[B]-\text{kill}[B]) \)
}
}

Summary of Reaching Definitions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reaching Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
</tr>
<tr>
<td>Transfer function</td>
<td>(f_b(x)) (f_b(x) = \text{Gen}_b \cup (x-\text{Kill}_b)) (\text{Gen}_b): definitions in b (\text{Kill}_b): killed defs</td>
</tr>
<tr>
<td>Meet Operation</td>
<td>(\text{in}[b] = \text{out}[\text{predecessors}])</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[Entry] = Ø</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[B] = Ø</td>
</tr>
</tbody>
</table>
III. Live Variable Analysis

- **Definition**
 - A variable v is live at point p if
 - the value of v is used along some path in the flow graph starting at p.
 - Otherwise, the variable is dead.

- **Problem statement**
 - For each basic block
 - determine if each variable is live in each basic block
 - Size of bit vector: one bit for each variable

Effects of a Basic Block (Transfer Function)

- **Observation:** Trace uses back to the definitions

 - directed graph

 - def

 - use

 - example:

 - $m = n + q$

 - $p = m$

 - $b = f_b$ (out[b])

 - $in[b] = f_b(out[b])$

- **Direction:** backward: $in[b] = f_b(out[b])$

- **Transfer function** for statement s: $x = y + z$
 - generate live variables: $Use[s] = \{y, z\}$
 - propagate live variables: $out[s] - Def[s]$, $Def[s] = x$
 - $in[s] = Use[s] \cup (out(s)-Def[s])$

- **Transfer function** for basic block b:
 - $in[b] = Use[b] \cup (out(b)-Def[b])$
 - $Use[b]$: set of locally exposed uses in b, uses not covered by definitions in b
 - $Def[b]$: set of variables defined in b.
Across Basic Blocks

- **Meet operator (\land):**
 - $\text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup ... \cup \text{in}[s_n]$, $s_1, ..., s_n$ are successors of b

- **Boundary condition:**

Example

```
entry
  n = p
  if g

r = n + r
  m = n + q
  p = m

out[1]

out[2]

out[3]
```

```
in[3]

in[2]
in[1]
```

```
exit
```
Liveness: Iterative Algorithm

Input: control flow graph $\text{CFG} = (N, E, \text{Entry}, \text{Exit})$

// **Boundary condition**
\[\text{in}[\text{Exit}] = \emptyset \]

// **Initialization for iterative algorithm**
For each basic block B other than Exit
\[\text{in}[B] = \emptyset \]

// **Iterate**
While (Changes to any in[] occur) {
 For each basic block B other than Exit {
 \[\text{out}[B] = \cup (\text{in}[s]), \text{for all successors } s \text{ of } B \]
 \[\text{in}[B] = \mathcal{f}_B(\text{out}[B]) \]
 }
}

IV. Framework

<table>
<thead>
<tr>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
</tr>
<tr>
<td>Direction</td>
<td>forward: $\text{out}[b] = \mathcal{f}_b(\text{in}[b])$</td>
</tr>
<tr>
<td></td>
<td>$\text{in}[b] = \cup \text{out}[^{\text{pred}(b)}]$</td>
</tr>
<tr>
<td>Transfer function</td>
<td>$\mathcal{f}_b(x) = \text{Gen}_b \cup (x - \text{Kill}_b)$</td>
</tr>
<tr>
<td>Meet Operation (\land)</td>
<td>\cup</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>$\text{out}[\text{entry}] = \emptyset$</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>$\text{out}[b] = \emptyset$</td>
</tr>
</tbody>
</table>
Thought Problem 1. "Must-Reach" Definitions

- A definition $D (a = b+c)$ must reach point P iff
 - D appears at least once along all paths leading to P
 - a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?

Problem 2: A legal solution to (May) Reaching Def?

- Will the worklist algorithm generate this answer?
Problem 3. What are the algorithm properties?

- Correctness

- Precision: how good is the answer?

- Convergence: will the analysis terminate?

- Speed: how long does it take?