Lecture 2

Introduction to Data Flow Analysis

I. Introduction
II. Example: Reaching definition analysis
III. Example: Liveness analysis
IV. A General Framework
 (Theory in next lecture)

Reading: Chapter 9.2

Overview of Data Flow Lectures 2-5

- High-level programming languages generate a lot of redundancy
- Many useful optimizations independently developed originally
 - Constant propagation
 - Common subexpressions
 - Loop invariant code motion
 - Dead code elimination
- A common framework: Dataflow (recurrent equations, fixed-points)
 - Theory: prove properties on the framework
 - Software engineering: implement / debug / optimize framework once
- Plan:
 - L2: Basic examples to build intuition about dataflow
 - L3: Theory
 - L4: Optimization examples
 - L5: Partial redundancy elimination (PRE)
 Subsumes multiple optimizations by setting up 4 DataFlow problems
Practice Today

- Many compilers use SSA (static single assignment) - an abstraction on top of dataflow
- Idea to be covered by the homework
- Useful for many optimizations, but cannot naturally support PRE

I. Compiler Organization

- Program
 - Front end
 - Abstract Syntax Tree
 - High-level IR
 - Machine-Independent Intermediate Representations
 - High-level optimization
 - Parallelization
 - Loop transformations
 - Low-level IR
 - Low-level optimization
 - Redundancy elimination
 - Code generation
 - Register allocation
 - Instruction scheduling
 - Machine code
Flow Graph

- Basic block = a maximal sequence of consecutive instructions s.t.
 - flow of control only enters at the beginning
 - flow of control can only leave at the end
 (no halting or branching except perhaps at end of block)

- Flow Graphs
 - Nodes: basic blocks
 - Edges
 - \(B_i \rightarrow B_j \) iff \(B_j \) can follow \(B_i \) immediately in execution

What is Data Flow Analysis?

- Data flow analysis:
 - Flow-sensitive: sensitive to the control flow in a function
 - intraprocedural analysis

- Examples of optimizations:
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Value of \(x \)?
Which "definition" defines \(x \)?
Is the definition still meaningful (live)?
Static Program vs. Dynamic Execution

- **Statically**: Finite program
- **Dynamically**: Can have infinitely many possible execution paths
- **Data flow analysis abstraction**:
 - For each point in the program: combines information of all the instances of the same program point.
- **Example of a data flow question**:
 - Which definition defines the value used in statement "b = a"?

Reaching Definitions

- Every assignment is a definition
- A definition d reaches a point p if there exists a path from the point immediately following d to p such that d is not killed (overwritten) along that path.
- **Problem statement**:
 - For each point in the program, determine if each definition in the program reaches the point
 - A bit vector per program point, vector-length = #defs
Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 - Transfer function \(f_b \) relates in[b] and out[b], for same b
 - Effect of flow of control:
 - relates out[b1], in[b2] if b1 and b2 are adjacent
- Find a solution to the equations

Effects of a Statement

\[
\begin{align*}
\text{in}[B0] & \quad \text{out}[B0] \\
\text{d0}: y &= 3 & f_{d0} \\
\text{d1}: x &= 10 & f_{d1} \\
\text{d2}: y &= 11 & f_{d2}
\end{align*}
\]

- \(f_s \): A transfer function of a statement
 - abstracts the execution with respect to the problem of interest
- For a statement \(s \) (d: \(x = y + z \))
 - \(\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s]) \)
 - \(\text{Gen}[s] \): definitions generated: \(\text{Gen}[s] = \{d\} \)
 - \(\text{Propagated} \) definitions: \(\text{in}[s] - \text{Kill}[s] \),
 where \(\text{Kill}[s] \): set of all other defs to \(x \) in the rest of program
Effects of a Basic Block

\[
\begin{align*}
\text{in}[B_0] \quad & \quad \text{d0: } y = 3 \quad f_{d0} \\
\downarrow \quad & \quad \downarrow \quad \downarrow \\
\text{d1: } x = 10 \quad f_{d1} \quad f_B = f_{d1} \cdot f_{d0} \\
\text{out}[B_0]
\end{align*}
\]

- Transfer function of a statement \(s \):
 \(\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s]) \)
- Transfer function of a basic block \(B \):
 - Composition of transfer functions of statements in \(B \)
 - \(\text{out}[B] = f_B(\text{in}[B]) \)
 \(= f_{d1} \cdot f_{d0}(\text{in}[B]) \)
 \(= \text{Gen}[d_1] \cup (\text{Gen}[d_2] \cup (\text{in}[B] - \text{Kill}[d_1])) \cdot \text{Kill}[d_1] \)
 \(= (\text{Gen}[d_1] \cup (\text{Gen}[d_2] - \text{Kill}[d_1])) \cup \text{in}[B] - (\text{Kill}[d_1] \cup \text{Kill}[d_2]) \)
 \(= \text{Gen}[B] \cup (\text{in}[B] - \text{Kill}[B]) \)

\(\text{Gen}[B] \): locally exposed definitions (available at end of bb)
\(\text{Kill}[B] \): set of definitions killed by \(B \)

Effects of the Edges (acyclic)

- Join node: a node with multiple predecessors
- \(\text{meet} \) operator (\(\land \)): \(\cup \)
 \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup \ldots \cup \text{out}[p_n] \), where
 \(p_1, \ldots, p_n \) are all predecessors of \(b \)
Cyclic Graphs

- Equations still hold
 - \(\text{out}[b] = f_b(\text{in}[b]) \)
 - \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup ... \cup \text{out}[p_n], p_1, ..., p_n \) pred.
- Find: fixed point solution

Reaching Definitions: Iterative Algorithm

input: control flow graph \(\text{CFG} = (N, E, \text{Entry}, \text{Exit}) \)

// Boundary condition
out[Entry] = \(\emptyset \)

// Initialization for iterative algorithm
For each basic block \(B \) other than \(\text{Entry} \)
out[\(B \)] = \(\emptyset \)

// iterate
While (Changes to any out[\(] \) occur) {
 For each basic block \(B \) other than \(\text{Entry} \) {
 in[\(B \)] = \(\cup (\text{out}[p]) \), for all predecessors \(p \) of \(B \)
 out[\(B \)] = \(f_B(\text{in}[B]) \) // \(\text{out}[B]\) = \(\text{gen}[B] \cup (\text{in}[B] - \text{kill}[B])\)
 }
}
Summary of Reaching Definitions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reaching Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer function $f_b(x)$</td>
<td>forward: $\text{out}[b] = f_b(\text{in}[b])$</td>
</tr>
<tr>
<td></td>
<td>$f_b(x) = \text{Gen}_b \cup (x \cdot \text{Kill}_b)$</td>
</tr>
<tr>
<td></td>
<td>Gen_b: definitions in b</td>
</tr>
<tr>
<td></td>
<td>Kill_b: killed defs</td>
</tr>
<tr>
<td>Meet Operation</td>
<td>$\text{in}[b] = \cup \text{out}[\text{predecessors}]$</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>$\text{out}[\text{entry}] = \emptyset$</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>$\text{out}[b] = \emptyset$</td>
</tr>
</tbody>
</table>

III. Live Variable Analysis

- **Definition**
 - A variable v is **live** at point p if
 - the value of v is used along some path in the flow graph starting at p.
 - Otherwise, the variable is **dead**.

- **Problem statement**
 - For each basic block
 - determine if each variable is live in each basic block
 - Size of bit vector: one bit for each variable
Effects of a Basic Block (Transfer Function)

- **Observation:** Trace uses back to the definitions
 - \(\text{def} \) → \(\text{use} \)

- **Direction:** backward: \(\text{in}[b] = f_b(\text{out}[b]) \)

- **Transfer function** for statement \(s: x = y + z \)
 - generate live variables: \(\text{Use}[s] = \{y, z\} \)
 - propagate live variables: \(\text{out}[s] - \text{Def}[s], \text{Def}[s] = x \)
 - \(\text{in}[s] = \text{Use}[s] \cup (\text{out}(s)-\text{Def}[s]) \)

- **Transfer function** for basic block \(b \):
 - \(\text{in}[b] = \text{Use}[b] \cup (\text{out}(b)-\text{Def}[b]) \)
 - \(\text{Use}[b] \) = set of locally exposed uses in \(b \), uses not covered by definitions in \(b \)
 - \(\text{Def}[b] \) = set of variables defined in \(b \).

Across Basic Blocks

- **Meet operator** (\(\land \)):
 - \(\text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup ... \cup \text{in}[s_n], s_1, ..., s_n \) are successors of \(b \)

- **Boundary condition:**
Liveness: Iterative Algorithm

input: control flow graph $\text{CFG} = (N, E, \text{Entry}, \text{Exit})$

// Boundary condition
$\text{in}[\text{Exit}] = \emptyset$

// Initialization for iterative algorithm
For each basic block B other than Exit
$\text{in}[B] = \emptyset$

// iterate
While (Changes to any $\text{in}[\cdot]$ occur) {
 For each basic block B other than Exit {
 $\text{out}[B] = \cup (\text{in}[s])$, for all successors s of B
 $\text{in}[B] = f_s(\text{out}[B])$ // $\text{in}[B]=\text{Use}[B]\cup(\text{out}[B]-\text{Def}[B])$
 }
}
IV. Framework

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>out[b] = f_b(in[b])</td>
<td>in[b] = \wedge out[pred(b)]</td>
</tr>
<tr>
<td>Transfer function</td>
<td>f_b(x) = Gen_b \cup (x - \text{Kill}_b)</td>
<td>f_b(x) = Use_b \cup (x - \text{Def}_b)</td>
</tr>
<tr>
<td>Meet Operation (\wedge)</td>
<td>\wedge</td>
<td>\wedge</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = \emptyset</td>
<td>in[exit] = \emptyset</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[b] = \emptyset</td>
<td>in[b] = \emptyset</td>
</tr>
</tbody>
</table>

Thought Problem 1. "Must-Reach" Definitions

- A definition D (a = b+c) must reach point P iff
 - D appears at least once along on all paths leading to P
 - a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?
Problem 2: A legal solution to (May) Reaching Def?

- Will the worklist algorithm generate this answer?

Problem 3. What are the algorithm properties?

- Correctness
- Precision: how good is the answer?
- Convergence: will the analysis terminate?
- Speed: how long does it take?