Lecture 13
Loop Transformations for Parallelism and Locality

1. Examples
2. Affine Partitioning: Do-all
3. Affine Partitioning: Pipelining

Readings: Chapter 11-11.3, 11.6-11.7.4, 11.9-11.9.6
Shared Memory Machines

Performance on Shared Address Space Multiprocessors: Parallelism & Locality
Parallelism and Locality

- Parallelism DOES NOT imply speed up!

- Parallel performance:
 Improve locality with loop transformations
 - Minimize communication
 - Operations using the same data are executed on the same processor

- Sequential performance:
 Improve locality with loop transformations
 - Minimize cache misses
 - Operations using the same data are executed close in time.
Loop Permutation (Loop Interchange)

for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I-1,J]

for I = 1 to 4
for J = 1 to 3
Z[I,J'] = Z[I,J]

\[
\begin{bmatrix}
 j' \\
 i'
\end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix} \begin{bmatrix}
 i \\
 j
\end{bmatrix}
\]
Carnegie Mellon

Loop Fusion

for I = 1 to 4
T[I] = A[I] + B[I] (s1)
for I' = 1 to 4
C[I'] = T[I'] x T[I'] (s2)
s1: \[[j] = [1] [i] \]
s2: \[[j] = [1] [i'] \]

for J = 1 to 4
C[J] = T[J] x T[J] (s2)

M. Lam CS243: Loop Transformations
Loop Transformations

- Unimodular transforms on loop nests
 - Permutation
 - Skewing
 - Reversal
- Cross statement transforms
 - Loop fusion
 - Loop fission
 - Re-indexing
- How to combine them to get parallelism and locality?
Affine Partitioning:
An Contrived but Illustrative Example

FOR j = 1 TO n
 FOR i = 1 TO n
 $A[i,j] = A[i,j] + B[i-1,j]$; \hspace{1cm} (S\textsubscript{1})
 $B[i,j] = A[i,j-1] * B[i,j]$; \hspace{1cm} (S\textsubscript{2})
Best Parallelization Scheme

Algorithm finds **affine partition mappings** for each instruction:

S1: Execute iteration \((i, j)\) on processor \(i-j\).

S2: Execute iteration \((i, j)\) on processor \(i-j+1\).

SPMD code: Let \(p\) be the processor’s ID number

```plaintext
    if (1-n <= p <= n) then
        if [1 <= p) then
            B[p,1] = A[p,0] * B[p,1];  \quad (S_2)
        for i_1 = max[1,1+p) to min[n,n-1+p) do
            A[i_1,i_1-p] = A[i_1,i_1-p] + B[i_1-1,i_1-p];  \quad (S_1)
            B[i_1,i_1-p+1] = A[i_1,i_1-p] * B[i_1,i_1-p+1];  \quad (S_2)
        if (p <= 0) then
            A[n+p,n] = A[n+p,N] + B[n+p-1,n];  \quad (S_1)
```
2. Iteration Space

\[
\text{FOR } i = 0 \text{ to } 5 \\
\quad \text{FOR } j = i \text{ to } 7 \\
\ldots
\]

- n-deep loop nests: n-dimensional polytope
- Iterations: coordinates in the iteration space
- Assume: iteration index is incremented in the loop
- Sequential execution order: lexicographic order
 - \([0,0], [0,1], \ldots, [0,6], [0,7], [1,1], \ldots, [1,6], [1,7], \ldots\)
For every pair of data dependent accesses $F_1 i_1 + f_1$ and $F_2 i_2 + f_2$

Find C_1, c_1, C_2, c_2:

$\forall \ i_1, i_2 \ F_1 i_1 + f_1 = F_2 i_2 + f_2 \rightarrow C_1 i_1 + c_1 = C_2 i_2 + c_2$

with the objective of maximizing the rank of C_1, C_2
Rank of Partitioning = Degree of Parallelism

Affine Mapping

\[
\begin{bmatrix}
0 & 0
\end{bmatrix}
\begin{bmatrix}
i
\end{bmatrix}
\quad
\begin{bmatrix}
0 & 1
\end{bmatrix}
\begin{bmatrix}
i
\end{bmatrix}
\quad
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
i
\end{bmatrix}
\]

Rank

0
1
2

Mapped to same processor
Example 1: Loop Transform

Find affine partitioning: c_1, c_2, c_0 such that

$$p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0$$

Suppose iteration i,j & i', j' refer to same location

$$i = i' - 1$$
$$j = j'$$

No communication means:

$$c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0$$

$$c_1(i'-1) + c_2 j' + c_0 = c_1 i' + c_2 j' + c_0$$

$$c_1 = 0$$
$$p = c_2 j + c_0$$

Pick simplest c_2, c_0: $c_2 = 1, c_0 = 0$
$$p = j$$
Code Generation

- Naive
 - Each processor visits all the iterations
 - Executes only if it owns that iteration
- Optimization
 - Removes unnecessary looping and condition evaluation
Code Generation

For $I = 1$ to 4

For $J = 1$ to 3

$Z[I,J] = Z[I-1,J]$

For $P = 1$ to 3

For $I = 1$ to 4

$Z[I,P] = Z[I-1,P]$

SPMD (single program multiple data) code:

For $I = 1$ to 4

$Z[I,P] = Z[I-1,P]$
Loop Permutation (Loop Interchange)

for $I = 1$ to 4
for $J = 1$ to 3
$Z[I,J] = Z[I-1,J]$

for $P = 1$ to 3
for $I = 1$ to 4
$Z[I,P] = Z[I-1,P]$

$$
\begin{bmatrix}
 p' \\
 i'
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 i \\
 j
\end{bmatrix}
$$
Example 2: Loop Fusion

Find affine partitioning: $c_{1,1}, c_{1,0}, c_{2,1}, c_{1,0}$, such that

$$s1: \begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} c_{1,1} \end{bmatrix} [i] + c_{1,0}$$

$$s2: \begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} c_{2,1} \end{bmatrix} [i'] + c_{2,0}$$

Suppose iteration i & i' refer to the same location

$i = i'$

No communication means:

$c_{1,1} i + c_{1,0} = c_{2,1} i' + c_{2,0}$

$c_{1,1} = c_{2,1}$
$c_{1,0} = c_{2,0}$

Pick simplest values: $c_{1,1} = c_{2,1} = 1$, $c_{1,0} = c_{2,0} = 0$

$p = i; p = i'$
for I = 1 to 4
 T[I] = A[I] + B[I] \quad (s1)
for I' = 1 to 4
 C[I'] = T[I'] \times T[I'] \quad (s2)

for P = 1 to 4
 C[P] = T[P] \times T[P] \quad (s2)

s1: \begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} [i]

s2: \begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} [i']
Example 3: 2 Nested, Parallel Loops

Find affine partitioning: \(c_1, c_2, c_0 \) such that

\[
p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0
\]

Suppose iteration \(i, j \) & \(i', j' \) refer to same location

\[
i = i' \\
j = j'
\]

No communication means:

\[
c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0 \\
c_1 i' + c_2 j' + c_0 = c_1 i + c_2 j + c_0
\]

No constraints

Two basis vectors: \([c_1 \: c_2] = [1 \: 0] \), or \([c_1 \: c_2] = [0 \: 1] \)

Two answers for \(p \): two degrees of parallelism

\[
\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]
Example 3: 2 Nested, Parallel Loops

for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I,J]+1

for p1 = 1 to 4
for p2 = 1 to 3
for I = 1 to 4
for J = 1 to 3
if (I==p1 & J == p2)
Z[I,J] = Z[I,J]+1

for p1 = 1 to 4
for p2 = 1 to 3
Z[p1,p2] = Z[p1,p2]+1
DO 1 J = 0, N
 I0 = MAX (-M, -J)
 DO 2 I = I0, -1
 DO 3 JJ = I0 - I, -1
 DO 3 L = 0, NMAT
 DO 2 L = 0, NMAT
 A(L,I,J) = A(L,I,J) * A(L,0,I+J)
 DO 4 L = 0, NMAT
 EPSS(L) = EPS * A(L,0,J)
 DO 5 JJ = I0, -1
 DO 5 L = 0, NMAT
 A(L,0,J) = A(L,0,J) - A(L, JJ,J) ** 2
 DO 4 L = 0, NMAT
 A(L,0,J) = 1. / SQRT (ABS (EPSS(L) + A(L,0,J)))
 DO 6 I = 0, NRHS
 DO 7 K = 0, N
 DO 8 L = 0, NMAT
 B(I,L,K) = B(I,L,K) * A(L,0,K)
 DO 7 JJ = 1, MIN (M, N-K)
 DO 7 L = 0, NMAT
 B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K+JJ) * B(I,L,K)
 DO 6 K = N, 0, -1
 DO 9 L = 0, NMAT
 B(I,L,K) = B(I,L,K) * A(L,0,K)
 DO 6 JJ = 1, MIN (M, K)
 DO 6 L = 0, NMAT
 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) * B(I,L,K)
Chotst: Results with Affine Partitioning + Blocking

(Unimodular: a subset of affine partitioning for perfect loop nests)

<table>
<thead>
<tr>
<th>Number of Processors</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Unimodular + Blocking</td>
</tr>
<tr>
<td>5</td>
<td>Unimodular + Blocking</td>
</tr>
<tr>
<td>6</td>
<td>Affine Partitioning + Blocking</td>
</tr>
<tr>
<td>7</td>
<td>Affine Partitioning + Blocking</td>
</tr>
<tr>
<td>8</td>
<td>Affine Partitioning + Blocking</td>
</tr>
</tbody>
</table>
Summary of Affine Partitioning

Communication-Free

Loops

Array

Processor ID

F_1i_1+f_1

F_2i_2+f_2

C_1i_1+c_1

C_2i_2+c_2
SOR (Successive Over-Relaxation): An Example

\[
\text{for } i = 1 \text{ TO } m \\
\quad \text{for } j = 1 \text{ to } n \\
\]
For every pair of data dependent accesses $F_{1i_1}+f_1$ and $F_{2i_2}+f_2$
Let $B_{1i_1}+b_1 \geq 0$, $B_{2i_2}+b_2 \geq 0$ be the corresponding loop bound constraints,
Find $C_{1i_1}+c_1$, $C_{2i_2}+c_2$:
\[\forall i_1, i_2 \quad B_{1i_1} + b_1 \geq 0, \quad B_{2i_2} + b_2 \geq 0 \]
\[(i_1 \leq i_2) \land (F_{1i_1} + f_1 = F_{2i_2} + f_2) \rightarrow C_{1i_1} + c_1 \leq C_{2i_2} + c_2 \]
with the objective of maximizing the rank of C_1, C_2
Key Insight

• Choice in time mapping => (pipelined) parallelism
• Rank(C) - 1 degree of parallelism with 1 degree of synchronization
• Can create blocks with Rank(C) dimensions

• Find time partitions is not as straightforward as space partitions
 – Need to deal with linear inequalities
 – Solved using Farkas Lemma (1894, 1902)
 there’s no simple intuitive proof
Summary of Affine Partitioning

Communication-Free

- Loops
- Array
- Processor ID
- Time Stage

Pipelining

- Loops
- Array
- Time Stage

\[i_1 \leq i_2 \]