Lecture 13

Binary Decision Diagrams (BDDs) in Pointer Analysis

1. Datalog → Relational Algebra
2. Relations in BDDs
3. Relational Algebra → BDDs
4. Context-Sensitive Pointer Analysis
5. Performance of BDD Algorithms
6. Experimental Results

Readings: Chapter 12
Automatic Conservative Analysis Generation

Programmer:
Security analysis in 10 lines

Compiler Writer:
Ptr analysis in 10 lines

PQL

Datalog

bddbddd
(BDD-based deductive database)
with Active Machine Learning

1000s of lines
1 year tuning

BDD operations

BDD (Binary Decision Diagrams): 10,000s-lines library
Interprocedural Pointer Analysis

Object creation
\[\text{pts}(v, h) \] \(\text{:- "h: T v = new T"."} \).

Assignment
\[\text{pts}(v_1, h_1) \] \(\text{:- "v_1 = v_2 & pts(v_2, h_1)."} \).

Store
\[\text{hpts}(h_1, f, h_2) \] \(\text{:- "v_1.f = v_2 & pts(v_1, h_1) & pts(v_2, h_2)."} \).

Load
\[\text{pts}(v_2, h_2) \] \(\text{:- "v_2 = v_1.f & pts(v_1, h_1) & hpts(h_1, f, h_2)."} \).

Parameter passing with virtual methods
\[\text{invokes } (s, m) \] \(\text{:- "s: v.n (...) & pts(v,h) & hType (h,t) & cha (t,n,m)"} \).
\[\text{pts}(v, h) \] \(\text{:- invokes } (s, m) \) \\
\[\text{formal } (m, i, v) \) & \(\text{actual } (s, i, w) \) & \(\text{pts } (w, h) \).
Cloning-Based Algorithm

- Apply the context-insensitive algorithm to the program to discover the call graph

- Context-sensitive analysis
 - Find strongly connected components
 - Create a “clone” for every context
 - Apply the context-insensitive algorithm to cloned call graph
Behavior of the Program

- Computing 3 tables for the whole program:
 - $\text{pts} (v,h)$, $\text{hpts}(h_1,f,h_2)$, invokes (s,m)

- Giant tables:
 - Context-sensitivity: 10^{14} clones
 - 47 bits to number the clones
 - If we need just 1 byte for each context: 100 terabytes

- Applying 6 rules
 - Each application operates on entire tables

- The rules are applied repeatedly many times
 - The tables grow monotonically
 - Lots of repeated computation
Outline

Binary Decision Diagrams (BDDs) in Pointer Analysis

1. Datalog -> Relational Algebra
2. Relations in BDDs
3. Relational Algebra -> BDDs
4. Context-Sensitive Pointer Analysis
5. Performance of BDD Algorithms
6. Experimental Results
1. Datalog to Relational Algebra

- Relational Algebra
 - A theoretic foundation for relational databases
 - E.g. SQL
Five Relational Algebra Operators

∪ Set Union
- Set Difference
ρ_{old→new} Rename old with name
π_{c} Project away column c
⋈ Join two relations based on common column name

EXAMPLE

vP(variable, obj)
Assign(dest, source)

vP(v_{1}, o) :- assign(v_{1}, v_{2}), vP(v_{2}, o).

\[t_{1} = \rho_{variable\rightarrow source}(vP); \]
\[t_{2} = assign \bowtie t_{1}; \quad // (v_{1}, v_{2}, o) \]
\[t_{3} = \pi_{source}(t_{2}); \quad // (v_{1}, o) \]
\[t_{4} = \rho_{dest\rightarrow variable}(t_{3}); \]
\[vP = vP \cup t_{4}; \]
Translating Datalog to Relational Algebra

- Translate recursion into a Repeat loop
- Let S be the state of the computation

Do

\[
S' = S; \\
S = \text{Apply-a-rule} (S');
\]

Until $S = S'$
Optimization: Semi-Naive Evaluation

• Relations keep growing with each iteration
• The same computation is repeated with increasingly large tables – lots of redundant work
• Semi-naïve evaluation: only compute the changed tuples
• Example

\[C(x,z) \rightarrow A(x,y), B(y,z) \]

Let \(A_i, B_i, C_i \) be the value in iteration \(i \):

\[\Delta A_i \text{ be the diff between } A_i, A_{i-1} \]
\[\Delta B_i \text{ be the diff between } B_i, B_{i-1} \]

\[C_i(x,z) \rightarrow C_{i-1}(x,z) \]
\[C_i(x,z) \rightarrow \Delta A_i(x,y), B_i(y,z) \]
\[C_i(x,z) \rightarrow A_i(x,y), \Delta B_i(y,z) \]
Example

$v_P(v_1, o) \ :- \ assign(v_1, v_2), v_P(v_2, o)$.

$v_P'' = v_P - v_P'$;
$v_P' = v_P$;
assign'' = assign - assign';
assign' = assign;
t_1 = \rho_{\text{variable}\rightarrow\text{source}}(v_P'')$;
t_2 = assign \bowtie t_1$;
t_5 = \rho_{\text{variable}\rightarrow\text{source}}(v_P)$;
t_6 = assign'' \bowtie t_5$;
t_7 = t_2 \cup t_6$;
t_3 = \pi_{\text{source}}(t_7)$;
t_4 = \rho_{\text{dest}\rightarrow\text{variable}}(t_3)$;
v_P = v_P \cup t_4$;
Eliminate Loop Invariant Computations

vP'' = vP – vP’;
vP’ = vP;
assign"" = assign – assign’;
assign’ = assign;
t_1 = \rho_{\text{variable} \rightarrow \text{source}}(vP'');
t_2 = assign \bowtie t_1;
t_5 = \rho_{\text{variable} \rightarrow \text{source}}(vP);
t_6 = assign"" \bowtie t_5;
t_7 = t_2 \cup t_6;
t_3 = \pi_{\text{source}}(t_7);
t_4 = \rho_{\text{dest} \rightarrow \text{variable}}(t_3);
vP = vP \cup t_4;

NOTE: assign never changes

vP'' = vP – vP’;
vP’ = vP;
t_1 = \rho_{\text{variable} \rightarrow \text{source}}(vP’');
t_2 = assign \bowtie t_1;
t_3 = \pi_{\text{source}}(t_2);
t_4 = \rho_{\text{dest} \rightarrow \text{variable}}(t_3);
vP = vP \cup t_4;
Outline

Binary Decision Diagrams (BDDs) in Pointer Analysis

1. Datalog -> Relational Algebra
2. Relations in BDDs
3. Relational Algebra -> BDDs
4. Context-Sensitive Pointer Analysis
5. Performance of BDD Algorithms
6. Experimental Results
2. Introduction to BDDs

- BDD: Binary Decision Diagrams
- Designed to exploit similarities in an exponential number of states
- Usage: logic synthesis, verification
Relations as BDDs

- Example

```
calls(A,B)
calls(A,C)
calls(A,D)
calls(B,D)
calls(C,D)
```
Call Graph Relation

The call graph relation can be expressed as a binary function:

- Relation expressed as a binary function.
 - \(A = 00, B = 01, C = 10, D = 11 \)

 \[
 f(x_1, x_2, x_3, x_4) = \text{calls}(<x_1, x_2>, <x_3, x_4>)
 \]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Binary Decision Diagrams (Bryant, 1986)

- Graphical encoding of a truth table.
Binary Decision Diagrams

- Collapse redundant nodes.
Binary Decision Diagrams

- Collapse redundant nodes.
Binary Decision Diagrams

• Collapse redundant nodes.
Binary Decision Diagrams

- Collapse redundant nodes.
Binary Decision Diagrams

• Eliminate unnecessary nodes.
Binary Decision Diagrams

- Eliminate unnecessary nodes.
What's the size of

- An empty set?
- The Universal set?
BDD Variable Order is Important to the size!

\[x_1x_2 + x_3x_4 \]

\(x_1, x_2, x_3, x_4 \) \(x_1, x_3, x_2, x_4 \)
Reduced Ordered BDD

• Ordered
 – variables are in a fixed order
• Reduced
 – Nodes are reduced to create a compact representation
• The ROBDD (Reduced, ordered) representation of a binary function is unique
Outline

Binary Decision Diagrams (BDDs) in Pointer Analysis

1. Datalog -> Relational Algebra
2. Relations in BDDs
3. Relational Algebra -> BDDs
4. Context-Sensitive Pointer Analysis
5. Performance of BDD Algorithms
6. Experimental Results
3. Datalog → BDDs

<table>
<thead>
<tr>
<th>Datalog</th>
<th>BDDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relations</td>
<td>Boolean functions</td>
</tr>
<tr>
<td>Relation algebra:</td>
<td>Boolean function ops:</td>
</tr>
<tr>
<td>\cup, select, project, \bowtie</td>
<td>apply, restrict, exists, relprod</td>
</tr>
<tr>
<td>Relation at a time</td>
<td>Function at a time</td>
</tr>
<tr>
<td>Semi-naïve evaluation</td>
<td>Incrementalization</td>
</tr>
<tr>
<td>Fixed-point</td>
<td>Iterate until stable</td>
</tr>
</tbody>
</table>
Basic BDD Operations

• apply (op, B₁, B₂)
 - 16 2-input logical functions

• restrict(c, x, B)
 - Restrict variable x to constant c = 0 or 1

• exists (x, B)
 - Does there exist x such that B is true?
Apply

- $B = \text{apply} \ (\text{op}, B_1, B_2)$
 - Combine two binary functions with a logical operator
 - B is a BDD that provides the answers to all possible inputs for $B_1 \ \text{op} \ B_2$
2-input Boolean Operators: 16 Combinations

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>X</td>
<td>Y</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>False</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X and Y</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X > Y</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X < Y</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X XOR Y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X OR Y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X NOR Y</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X XNOR Y</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NOT Y</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X ≥ Y</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NOT X</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X ≤ Y</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X NAND Y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Algorithm: Apply

Apply(op, B, B') = Apply(op, B, C) Apply(op, B', C')

Apply(op, C) = Apply(op, B, C) Apply(op, B', C')

Where C is (1) a terminal node or (2) a non-terminal with var(root(C)) > x

Apply(op, B) = Apply(op, B, C) Apply(op, B, C')

Where B is (1) a terminal node or (2) a non-terminal with var(root(B)) > x

Apply(op, u, v) = w, where w = u op v
Example: Apply \((\text{op}, R, S)\)

- Combine the BDDs for generic \text{op}

\[
\begin{align*}
\text{E1: } & (x_1 \land x_3) \lor x_4 \lor (x_2 \land x_3) & \text{E2: } & (x_1 \land x_3) \lor x_4 \\
\text{Question: what is E1 } & \lor \text{ E2?}
\end{align*}
\]
Example: Apply \((\text{OR}, R, S)\)

- Apply \text{OR} to the constant nodes

\[E_1: (x_1 \land x_3) \lor x_4 \lor (x_2 \land x_3) \quad E_2: (x_1 \land x_3) \lor x_4 \]
Example: Apply (OR, R, S)

- Collapse redundant nodes

E1: \((x_1 \land x_3) \lor x_4 \lor (x_2 \land x_3)\)
E2: \((x_1 \land x_3) \lor x_4\)
Example: Apply (OR, R, S)

- Collapse redundant nodes

E1: \((x_1 \land x_3) \lor x_4 \lor (x_2 \land x_3)\) E2: \((x_1 \land x_3) \lor x_4\)
Example: Apply (OR, R, S)

- Collapse redundant nodes

E1: \((x_1 \land x_3) \lor x_4 \lor (x_2 \land x_3)\)
E2: \((x_1 \land x_3) \lor x_4\)

\[\text{E1 } \lor \text{E2}\]
Example: Apply (OR, R, S)

E1: \((x_1 \land x_3) \lor x_4 \lor (x_2 \land x_3)\) E2: \((x_1 \land x_3) \lor x_4\)

\((R_1, S_1)\) \((R_2, S_3)\) \((R_4, S_3)\) \((R_3, S_2)\)

E1 \lor E2
Algorithm: Restrict

- restrict(c, x, B)
 - Restrict variable x to constant c = 0 or 1

restrict(0, x_3, B)
Algorithm: Exists

\[B_1 = \text{exists}(x, B) \]
\[= \text{apply} (\text{OR, restrict} (0,x,B), \text{restrict} (1,x,B)) \]

• \(B_1 = 0 \) if there does not exist an \(x \)
 \[= \text{binary function (without variable } x \text{)} \]
 that defines when there exists an \(x \) such that \(B \) is true.

\[E: (x_1 \land x_2) \lor (\overline{x}_1 \land x_3) \]

Does there exist \(x_1 \) such that \(E \) is true?
When does there exist an \(x_1 \) such that \(E \) is true?

Useful inference rule:

\[
\begin{array}{c}
p \lor A \\
\hline
\neg p \lor B \\
A \lor B
\end{array}
\]
Does there exist x_1 such that B is true?

\[(x_1 \land x_2) \lor (\overline{x_1} \land x_3)\]

D

restrict(0, x_1, D)

x_3

restrict(1, x_1, D)

x_2

restrict(0, x_1, D) OR restrict(1, x_1, D)

$x_2 \lor x_3$
BDD: Relational Product (relprod)

- Relprod is a Quantified Boolean Formula
 (Corresponding to join + project in relational algebra)
- \(h = \text{Relprod}(f, g, [x_1, x_2, \ldots]) \)
 - \(h(v_1, \ldots v_n) \) is true if
 \(\exists x_1, x_2, \ldots f(x_1, x_2, \ldots, v_i, \ldots) \land g(x_1, x_2, \ldots, v_j, \ldots) \)
- Same as an \(\land \) operation
 followed by projecting away common attributes \(x_1, x_2, \ldots \)
- Important because it is common and much faster to
 combine the \(\land \) and projection operations in BDDs
Relational algebra -> BDD operations

\[vP'' = vP - vP'; \]
\[vP' = vP; \]
\[t_1 = \rho_{\text{variable} \rightarrow \text{source}}(vP''); \]
\[t_2 = \text{assign} \times t_1; \]
\[t_3 = \pi_{\text{source}}(t_2); \]
\[t_4 = \rho_{\text{dest} \rightarrow \text{variable}}(t_3); \]
\[vP = vP \cup t_4; \]

\[vP'' = \text{diff}(vP, vP'); \]
\[vP' = \text{copy}(vP); \]
\[t_1 = \text{replace}(vP'', \text{variable} \rightarrow \text{source}); \]
\[t_3 = \text{relprod}(t_1, \text{assign}, \text{source}); \]
\[t_4 = \text{replace}(t_3, \text{dest} \rightarrow \text{variable}); \]
\[vP = \text{or}(vP, t_4); \]
Outline

Binary Decision Diagrams (BDDs) in Pointer Analysis

1. Datalog -> Relational Algebra
2. Relations in BDDs
3. Relational Algebra -> BDDs
4. Context-Sensitive Pointer Analysis
5. Performance of BDD Algorithms
6. Experimental Results
4. Context-Sensitive Pointer Analysis Algorithm

1. First, do context-insensitive pointer analysis to get call graph.
2. Number clones.
3. Do context-insensitive algorithm on the cloned graph.

- Results explicitly generated for every clone.
- Individual results retrievable with Datalog query.
Size of BDDs

• Represent tiny and huge relations compactly
• Size depends on redundancy
 – Similar contexts have similar numberings
 – Variable ordering in BDDs
Expanded Call Graph
Numbering Clones
Outline

Binary Decision Diagrams (BDDs) in Pointer Analysis

1. Datalog → Relational Algebra
2. Relations in BDDs
3. Relational Algebra → BDDs
4. Context-Sensitive Pointer Analysis
5. Performance of BDD Algorithms
6. Experimental Results
Cloning-Based Algorithm

- Apply the context-insensitive algorithm to the program to discover the call graph

- Context-sensitive analysis
 - Find strongly connected components
 - Create a “clone” for every context
 - Apply the context-insensitive algorithm to cloned call graph
5. Performance of Context-Sensitive Pointer Analysis

- Direct implementation
 - Does not finish even for small programs
 - \geq 3000 lines of code
- Requires tuning for about 1 year
- Easy to make mistakes
 - Mistakes found months later
An Adventure in BDDs

• Context-sensitive numbering scheme
 – Modify BDD library to add special operations.
 – Can’t even analyze small programs. \(\text{Time}: \infty \)

• Improved variable ordering
 – Group similar BDD variables together.
 – Interleave equivalence relations.
 – Move common subsets to edges of variable order. \(\text{Time}: 40h \)

• Incrementalize outermost loop
 – Very tricky, many bugs. \(\text{Time}: 36h \)

• Factor away control flow, assignments
 – Reduces number of variables \(\text{Time}: 32h \)
An Adventure in BDDs

• Exhaustive search for best BDD order
 – Limit search space by not considering intradomain orderings. \textit{Time: 10h}

• Eliminate expensive rename operations
 – When rename changes relative order, result is not isomorphic. \textit{Time: 7h}

• Improved BDD memory layout
 – Preallocate to guarantee contiguous. \textit{Time: 6h}

• BDD operation cache tuning
 – Too small: redo work, too big: bad locality
 – Parameter sweep to find best values. \textit{Time: 2h}
An Adventure in BDDs

• Simplified treatment of exceptions
 – Reduce number of vars, iterations necessary for convergence.
 Time: 1h

• Change iteration order
 – Required redoing much of the code.
 Time: 48m

• Eliminate redundant operations
 – Introduced subtle bugs.
 Time: 45m

• Specialized caches for different operations
 – Different caches for and, or, etc.
 Time: 41m
An Adventure in BDDs

- Compact BDD nodes
 - 20 bytes \rightarrow 16 bytes

- Improved BDD hashing function
 - Simpler hash function.

- Total development time: 1 year
 - 1 year per analysis?!?

- Optimizations obscured the algorithm.
- Many bugs discovered, maybe still more.
- Create bddbddd to make optimization available to all analysis writers using Datalog
Variable Numbering: Active Machine Learning

- Must be determined dynamically
- Limit trials with properties of relations
- Each trial may take a long time
- Active learning:
 select trials based on uncertainty
- Several hours
- Comparable to exhaustive for small apps
Summary: Optimizations in bdddbdb

• Algorithmic
 – Clever context numbering to exploit similarities

• Query optimizations
 – Magic-set transformation
 – Semi-naïve evaluation
 – Reduce number of rename operations

• Compiler optimizations
 – Redundancy elimination, liveness analysis, dead code elimination, constant propagation, definition-use chaining, global value numbering, copy propagation

• BDD optimizations
 – Active machine learning

• BDD library extensions and tuning
Outline

Binary Decision Diagrams (BDDs) in Pointer Analysis

1. Datalog -> Relational Algebra
2. Relations in BDDs
3. Relational Algebra -> BDDs
4. Context-Sensitive Pointer Analysis
5. Performance of BDD Algorithms
6. Experimental Results
6. Experimental Results

• Top 20 Java projects on SourceForge
 – Real programs with 100K+ users each

• Using automatic bddbddb solver
 – Each analysis only a few lines of code
 – Easy to try new algorithms, new queries

• Test system:
 – Pentium 4 2.2GHz, 1GB RAM
 – RedHat Fedora Core 1, JDK 1.4.2_04, javabdd library, Joeq compiler
Analysis time

Variable nodes (K) vs. Seconds

$y = 0.0078x^{2.3233}$

$R^2 = 0.9197$
Analysis memory

\[y = 0.3609x^{1.4204} \]

\[R^2 = 0.8859 \]
Benchmark

Nine large, widely used applications
• Blogging/bulletin board applications
• Used at a variety of sites
• Open-source Java J2EE apps
• Available from SourceForge.net
Vulnerabilities Found

<table>
<thead>
<tr>
<th></th>
<th>SQL injection</th>
<th>HTTP splitting</th>
<th>Cross-site scripting</th>
<th>Path traversal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Parameter</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Cookie</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Non-Web</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>29</td>
</tr>
</tbody>
</table>
Accuracy

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Classes</th>
<th>Context insensitive</th>
<th>Context sensitive</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>jboard</td>
<td>264</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>blueblog</td>
<td>306</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>webgoat</td>
<td>349</td>
<td>51</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>blojsom</td>
<td>428</td>
<td>48</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>personalblog</td>
<td>611</td>
<td>460</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>snipsnap</td>
<td>653</td>
<td>732</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>road2hibernate</td>
<td>867</td>
<td>18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pebble</td>
<td>889</td>
<td>427</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>roller</td>
<td>989</td>
<td>378</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5356</td>
<td>2115</td>
<td>41</td>
<td>12</td>
</tr>
</tbody>
</table>
Automatic Conservative Analysis Generation

Programmer: Security analysis in 10 lines

Compiler Writer: Ptr analysis in 10 lines

PQL

Datalog

bddbddd (BDD-based deductive database) with Active Machine Learning

BDD operations

BDD (Binary Decision Diagrams): 10,000s-lines library

1000s of lines
1 year tuning
General Lessons

• BDD: A (magical) data structure for exponential amount of information
 – No free lunch: only if redundancy exists
 – Not suitable for random information
 – Not easy to “tame” either

• Pointer alias analysis
 – Many “clever” attempts to exploit program semantics failed to scale
 – Imprecision causes the representation to explode

• Reuse of languages and libraries
 – Key software engineering productivity