Lecture 13
Loop Transformations
for Parallelism and Locality

1. Examples
2. Affine Partitioning: Do-all
3. Affine Partitioning: Pipelining

Readings: Chapter 11-11.3, 11.6-11.7.4, 11.9-11.9.6

Shared Memory Machines

Performance on Shared Address Space Multiprocessors:
Parallelism & Locality
Parallelism and Locality

- Parallelism DOES NOT imply speed up!

- Parallel performance:
 Improve locality with loop transformations
 - Minimize communication
 - Operations using the same data are executed on the same processor

- Sequential performance:
 Improve locality with loop transformations
 - Minimize cache misses
 - Operations using the same data are executed close in time.

Loop Permutation (Loop Interchange)

for I = 1 to 4
for J = 1 to 3
\[Z[I,J] = Z[I-1,J] \]

for I' = 1 to 3
for J' = 1 to 4
\[Z[I',J'] = Z[I'-1,J'] \]
Loop Fusion

\[
\begin{align*}
\text{for } I &= 1 \text{ to } 4 \\
T[I] &= A[I] + B[I] \quad (s1) \\
\text{for } I' &= 1 \text{ to } 4 \\
C[I'] &= T[I'] \times T[I'] \quad (s2)
\end{align*}
\]

\[\begin{align*}
\text{for } J &= 1 \text{ to } 4 \\
T[J] &= A[J] + B[J] \quad (s1) \\
C[J] &= T[J] \times T[J] \quad (s2)
\end{align*}\]

\[s1: [j] = [1] [i] \]
\[s2: [j] = [1] [i'] \]

Loop Transformations

- Unimodular transforms on loop nests
 - Permutation
 - Skewing
 - Reversal
- Cross statement transforms
 - Loop fusion
 - Loop fission
 - Re-indexing
- How to combine them to get parallelism and locality?
Affine Partitioning:
An Contrived but Illustrative Example

FOR j = 1 TO n
FOR i = 1 TO n
 A[i,j] = A[i,j]+B[i-1,j]; \hspace{1cm} (S_1)
 B[i,j] = A[i,j-1]*B[i,j]; \hspace{1cm} (S_2)

Best Parallelization Scheme

Algorithm finds affine partition mappings for each instruction:

S1: Execute iteration (i, j) on processor i-j.
S2: Execute iteration (i, j) on processor i-j+1.

SPMD code: Let p be the processor's ID number

if (1-n <= p <= n) then
 if (1 <= p) then
 B[p,1] = A[p,0] * B[p,1]; \hspace{1cm} (S_2)
 for i_1 = max(1,1+p) to min(n,n-1+p) do
 A[i_1,i_1-p] = A[i_1,i_1-p] + B[i_1-1,i_1-p]; \hspace{1cm} (S_1)
 B[i_1,i_1-p+1] = A[i_1,i_1-p] * B[i_1,i_1-p+1]; \hspace{1cm} (S_2)
 if (p <= 0) then
 A[n+p,n] = A[n+p,N] + B[n+p-1,n]; \hspace{1cm} (S_1)
2. Iteration Space

FOR $i = 0$ to 5
 FOR $j = i$ to 7

- n-deep loop nests: n-dimensional polytope
- Iterations: coordinates in the iteration space
- Assume: iteration index is incremented in the loop
- Sequential execution order: lexicographic order
 - $[0,0], [0,1], ..., [0,6], [0,7], [1,1], ..., [1,6], [1,7], ...$

Maximum Parallelism & No Communication

For every pair of data dependent accesses $F_{i_1} + f_1$ and $F_{j_2} + f_2$

Find C_{i_1}, C_{i_1}, C_{j_2}, C_2:

\[\forall i_1, j_2 \quad F_{i_1} + f_1 = F_{j_2} + f_2 \rightarrow C_{i_1} + c_1 = C_{j_2} + c_2 \]

with the objective of maximizing the rank of C_{i_1}, C_2
Rank of Partitioning = Degree of Parallelism

Affine Mapping

\[
\begin{bmatrix}
 0 & 0 \\
 i & j
\end{bmatrix}
\]

\[
\begin{bmatrix}
 0 & 1 \\
 i & j
\end{bmatrix}
\]

\[
\begin{bmatrix}
 1 & 0 \\
 i & j
\end{bmatrix}
\]

\[
\begin{bmatrix}
 0 & 1 \\
 i & j
\end{bmatrix}
\]

Rank

0 1 2

Mapped to same processor

Example 1: Loop Transform

Find affine partitioning: c_1, c_2, c_3 such that

\[
p = \begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
\begin{bmatrix}
 i \\
 j
\end{bmatrix} + c_0
\]

Suppose iteration i, j & i', j' refer to same location

\[
i = i' - 1
\]

\[
j = j'
\]

No communication means:

\[
c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0
\]

\[
c_1 (i' - 1) + c_2 j' + c_0 = c_1 i' + c_2 j' + c_0
\]

\[
c_1 = 0
\]

\[
p = c_2 j + c_0
\]

Pick simplest c_2, c_0: $c_2 = 1$, $c_0 = 0$

\[
p = j
\]
Code Generation

- Naive
 - Each processor visits all the iterations
 - Executes only if it owns that iteration
- Optimization
 - Removes unnecessary looping and condition evaluation

M. Lam
CS243: Loop Transformations

for I = 1 to 4
 for J = 1 to 3
 Z[I,J] = Z[I-1,J]

for P = 1 to 3
 for I = 1 to 4
 Z[I,P] = Z[I-1,P]

for I = 1 to 4
 for J = 1 to 3
 Z[I,J] = Z[I-1,J]

SPMD (single program multiple data) code:

for I = 1 to 4
 Z[I,P] = Z[I-1,P]

for P = 1 to 3
 for I = 1 to 4
 Z[I,J] = Z[I-1,J]

for P = 1 to 3
 for I = 1 to 4
 Z[I,P] = Z[I-1,P]
Loop Permutation (Loop Interchange)

for $I = 1$ to 4
for $J = 1$ to 3
$Z[I,J] = Z[I-1,J]$

for $P = 1$ to 3
for $I = 1$ to 4
$Z[I,P] = Z[I-1,P]$

$\begin{bmatrix} p' \\ i' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}$

Example 2: Loop Fusion

for $I = 1$ to 4
$T[I] = A[I] + B[I]$ (s1)
for $I' = 1$ to 4
$C[I'] = T[I'] \times T[I']$ (s2)

Find affine partitioning: $c_{1,1}, c_{1,0}, c_{2,1}, c_{1,0}$, such that

s1: $[p] = \begin{bmatrix} c_{1,1} \\ i \end{bmatrix} + c_{1,0}$

s2: $[p] = \begin{bmatrix} c_{2,1} \\ i' \end{bmatrix} + c_{2,0}$

Suppose iteration i & i' refer to the same location
$i = i'$

No communication means:
$c_{1,1} i + c_{1,0} = c_{1,1} i' + c_{1,0}$
$c_{1,1} = c_{2,1}$
$c_{1,0} = c_{2,0}$

Pick simplest values: $c_{1,1} = c_{2,1} = 1$,
$s_{1,0} = c_{2,0} = 0$
$p = i; p = i'$
Example 3: 2 Nested, Parallel Loops

Find affine partitioning: \(c_1, c_2, c_0 \) such that

\[
p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0
\]

Suppose iteration \((i, j)\) & \((i', j')\) refer to same location

\[
i = i'
\]

\[
j = j'
\]

No communication means:

\[
c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0
\]

\[
c_1 i' + c_2 j' + c_0 = c_1 i + c_2 j + c_0
\]

No constraints

Two basis vectors: \([c_1, c_2] = [1, 0]\), or \([c_1, c_2] = [0, 1]\)

Two answers for \(p \): two degrees of parallelism

\[
\begin{bmatrix}
p_1 \\
p_2
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]

M. Lam CS243: Loop Transformations 18
Example 3: 2 Nested, Parallel Loops

```
for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I,J]+1
```

```
for p1 = 1 to 4
for p2 = 1 to 3
for I = 1 to 4
for J = 1 to 3
if (I==p1 & J == p2)
Z[I,J] = Z[I,J]+1
```

```
M. Lam
CS243: Loop Transformations
```
Cotst: Results with Affine Partitioning + Blocking

(Unimodular: a subset of affine partitioning for perfect loop nests)

![Chart showing speedup vs number of processors for Unimodular + Blocking and Affine Partitioning + Blocking.]

Summary of Affine Partitioning

Communication-Free

Loops

F₁₁ + f₁

F₂₂ + f₂

C₁₁ + c₁

C₂₂ + c₂

Processor ID

Array
Advanced topic: Pipelining

SOR (Successive Over-Relaxation): An Example

for i = 1 to m
 for j = 1 to n

Finding the Maximum Degree of Pipelining

For every pair of data dependent accesses F_{i_1} + f_1 and F_{i_2} + f_2

Let B_{i_1} + b_1 ≥ 0, B_{i_2} + b_2 ≥ 0 be the corresponding loop bound constraints,

Find C_{i_1}, C_{i_2}, C_2:

∀ i_1, i_2
B_{i_1} + b_1 ≥ 0, B_{i_2} + b_2 ≥ 0

(i_1, i_2) AND (F_{i_1} + f_1 = F_{i_2} + f_2) → C_{i_1} + c_1 ≤ C_{i_2} + c_2

with the objective of maximizing the rank of C_{i_1}, C_{i_2}
Key Insight

- Choice in time mapping => (pipelined) parallelism
- Rank(C) - 1 degree of parallelism with 1 degree of synchronization
- Can create blocks with Rank(C) dimensions

- Find time partitions is not as straightforward as space partitions
 - Need to deal with linear inequalities
 - Solved using Farkas Lemma (1894, 1902)
 there’s no simple intuitive proof

Summary of Affine Partitioning

Communication-Free

Loops: $F_{i1} + f_1$; $F_{i2} + f_2$; $C_{i1} + c_1$; $C_{i2} + c_2$

Array

Processor ID

Pipelining

Loops: $i_1 \leq i_2$

Array

Time Stage