Lecture 12
Parallelization

I. Basic Parallelization
II. Data dependence analysis
III. Interprocedural parallelization

Chapter 11.1-11.1.4
Why?

- Automatic parallelization is the holy grail
- Signal processing
 - A simpler but very useful domain
 - Has dense matrices
 - Lots of parallelism, ways to parallelize
 - But still hard to get good performance
- Understanding parallelization makes you a better programmer for parallel machines
- Beautiful abstraction: linear algebra, integer linear programming
Parallelization of Numerical Applications

- **DoAll loop parallelism**
 - Find loops whose iterations are independent
 - Number of iterations typically scales with the problem
 - Usually much larger than the number of processors in a machine
 - Divide up iterations across machines
Basic Parallelism

Examples:

FOR $i = 1$ to 100
 \[A[i] = B[i] + C[i] \]

FOR $i = 11$ to 20
 \[a[i] = a[i-1] + 3 \]

FOR $i = 11$ to 20
 \[a[i] = a[i-10] + 3 \]

• Does there exist a data dependence edge between two different iterations?
• A data dependence edge is loop-carried if it crosses iteration boundaries
• DoAll loops: loops without loop-carried dependences
Recall: Data Dependences

- True dependence:
 \[a = \]
 \[= a \]

- Anti-dependence:
 \[= a \]
 \[a = \]

- Output dependence
 \[a = \]
 \[a = \]
Affine Array Accesses

- Common patterns of data accesses: \((i, j, k \text{ are loop indexes})\)
 \[
 \]

- **Array indexes are affine expressions of surrounding loop indexes**
 - Loop indexes: \(i_n, i_{n-1}, \ldots, i_1\)
 - Integer constants: \(c_n, c_{n-1}, \ldots, c_0\)
 - Array index: \(c_n i_n + c_{n-1} i_{n-1} + \ldots + c_1 i_1 + c_0\)
 - Affine expression: linear expression + a constant term \((c_0)\)
II. Formulating Data Dependence Analysis

FOR i := 2 to 5 do

• Between read access A[i] and write access A[i-2] there is a dependence if:
 – there exist two iterations \(i_r\) and \(i_w\) within the loop bounds, s.t.
 – iterations \(i_r\) & \(i_w\) read & write the same array element, respectively

\[\exists\text{integers } i_w, i_r \quad 2 \leq i_w, i_r \leq 5 \quad i_r = i_w - 2\]

• Between write access A[i-2] and write access A[i-2] there is a dependence if:

\[\exists\text{integers } i_w, i_v \quad 2 \leq i_w, i_v \leq 5 \quad i_w - 2 = i_v - 2\]

– To rule out the case when the same instance depends on itself:
 • add constraint \(i_w \neq i_v\)
Memory Disambiguation is Undecidable at Compile Time

read(n)
For i =
 a[i] = a[n]
Domain of Data Dependence Analysis

- Only use loop bounds and array indexes that are affine functions of loop variables

\[
\text{for } i = 1 \text{ to } n \\
\quad \text{for } j = 2i \text{ to } 100 \\
\quad a[i+2j+3][4i+2j][i\times i] = ... \\
\quad ... = a[1][2i+1][j]
\]

- Assume a data dependence between the read & write operation if:
 - Let a read instance be denoted with indexes \(i_r, j_r\) and
 - a write instance be denoted with indexes \(i, j\)

\[\exists \text{ Integers } i_r, j_r, i, j, n\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w \\
n
\end{bmatrix}
+ \begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 2 \\
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w \\
\end{bmatrix}
+ \begin{bmatrix}
3 \\
0 \\
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
2 & 0 \\
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r \\
\end{bmatrix}
+ \begin{bmatrix}
1 \\
1 \\
\end{bmatrix}
\]
Domain of Data Dependence Analysis

- Equate each dimension of array access; ignore non-affine ones
 - No solution \rightarrow No data dependence
 - Solution \rightarrow there may be a dependence
Complexity of Data Dependence Analysis

For every pair of accesses not necessarily distinct \((F_1, f_1)\) and \((F_2, f_2)\) one must be a write operation.

Let \(B_1i_1 + b_1 \geq 0, B_2i_2 + b_2 \geq 0\) be the corresponding loop bound constraints,

\[\exists \text{ integers } i_1, i_2 \quad B_1i_1 + b_1 \geq 0, B_2i_2 + b_2 \geq 0 \]

\[F_1i_1 + f_1 = F_2i_2 + f_2 \]

If the accesses are not distinct, then add the constraint \(i_1 \neq i_2\)

- Equivalent to integer linear programming

\[\exists \text{ integer } \hat{i} \quad A_1\hat{i} \leq \hat{b}_1 \quad A_2\hat{i} = \hat{b}_2 \]

- Integer linear programming is \textbf{NP-complete}
 - \(O(\text{size of the coefficients})\) or \(O(n^n)\)
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • If there is no solution, then there is no integer solution
Fourier-Motzkin Elimination

- To eliminate a variable from a set of linear inequalities.
- To eliminate a variable x_1
 - Rewrite all expressions in terms of lower or upper bounds of x_1
 - Create a transitive constraint for each pair of lower and upper bounds.
- Example: Let L, U be lower bounds and upper bounds resp
 - To eliminate x_1:

$$L_1(x_2, \ldots, x_n) \leq x_1 \leq U_1(x_2, \ldots, x_n)$$
$$L_2(x_2, \ldots, x_n) \leq x_1 \leq U_2(x_2, \ldots, x_n)$$

$$L_1(x_2, \ldots, x_n) \leq U_1(x_2, \ldots, x_n)$$
$$L_1(x_2, \ldots, x_n) \leq U_2(x_2, \ldots, x_n)$$
$$L_2(x_2, \ldots, x_n) \leq U_1(x_2, \ldots, x_n)$$
$$L_2(x_2, \ldots, x_n) \leq U_2(x_2, \ldots, x_n)$$
Example

FOR $i = 1$ to 5
 FOR $j = i+1$ to 5
 $A[i,j] = f(A[i,i], A[i-1,j])$

1: Data dep between $A[i,j], A[i,i]$
 $i = i'$
 $j = i'$
 $i' + 1 \leq i'$

2: Data dep between $A[i,j]$ and $A[i-1,j]$
 $i = i' - 1$ => $i+1 = i'$
 $j = j'$

Substituting
 $1 \leq i + 1, \quad i + 1 \leq 5$
 $i + 2 \leq j, \quad j \leq 5$

Combining
 $1 \leq i; i \leq 4 \quad i \leq j - 2; j \leq 5$

Eliminating i:
 $1 \leq 4; 1 \leq j - 2; j \leq 5$
 $3 \leq j; \quad j \leq 5$

Eliminating j:
 $3 \leq 5$
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • Add heuristics to encourage finding an integer solution.
 – Create 2 subproblems if a real, but not integer, solution is found.
 • For example, if \(x = 0.5 \) is a solution,
 create two problems,
 by adding \(x \leq 0 \) and \(x \geq 1 \) respectively to original constraint.
Relaxing Dependences

Privatization:

- Scalar

 \[
 \text{for } i = 1 \text{ to } n \\
 t = (A[i] + B[i]) / 2; \\
 C[i] = t * t;
 \]

- Array

 \[
 \text{for } i = 1 \text{ to } n \\
 \text{for } j = 1 \text{ to } n \\
 t[j] = (A[i,j] + B[i,j]) / 2; \\
 \text{for } j = 1 \text{ to } n \\
 C[i,j] = t[j] * t[j];
 \]

Reduction:

\[
\text{for } i = 1 \text{ to } n \\
\text{sum} = \text{sum} + A[i];
\]
Interprocedural Parallelization

- Why? Amdahl’s Law
- Interprocedural symbolic analysis
 - Find interprocedural array indexes which are affine expressions of outer loop indices
- Interprocedural parallelization analysis
 - Data dependence based on summaries of array regions accessed
 - If the regions do not intersect, there is no parallelism
 - Find privatizable scalar variables and arrays
 - Find scalar and array reductions
Conclusions

• Basic parallelization
 – Doall loop: loops with no loop-carried data dependences
 – Data dependence for affine loop indexes = integer linear programming

• Coarse-grain parallelism because of Amdahl’s Law
 – Interprocedural analysis is useful for affine indices
 – Ask users for help on unresolved dependences
1. Blocking Example: Matrix Multiplication

\[\begin{align*}
\text{Data} & \quad \text{Accessed} \\
1000 & \quad 1002000 \\
32 & \quad 65024
\end{align*} \]
Experimental Results

- With Blocking
- Without Blocking
Code Transform

• Before

```c
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        for (k = 0; k < n; k++) {
            Z[i,j] = Z[i,j] + X[i,k] * Y[k,j];
        }
    }
}
```

• After

```c
for (ii = 0; ii < n; ii += B) {
    for (jj = 0; jj < n; jj += B) {
        for (kk = 0; kk < n; kk += B) {
            for (i = ii; i < min(n, kk+B); i++) {
                for (j = jj; j < min(n, kk+B); j++) {
                    for (k = kk; k < min(n, kk+B); k++) {
                        Z[i,j] = Z[i,j] + X[i,k] * Y[k,j];
                    }
                }
            }
        }
    }
}
```