Lecture 11
Pipelined Parallelism

1. Intuition: Time mapping
2. Time Affine Partitioning Problem
3. Time Affine Partitioning Algorithm
4. Coarsest-Grain Parallelization Algorithm
5. Blocking
6. Examples

Readings: Chapter 11.8-11.9
1. Recall: Maximum Parallelism & No Communication

C: Space partitioning of Computation to Processor ID
For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$

Find C_1, c_1, C_2, c_2:

$$\forall \ i_1, i_2 \quad F_1 i_1 + f_1 = F_2 i_2 + f_2 \rightarrow C_1 i_1 + c_1 = C_2 i_2 + c_2$$

with the objective of maximizing the rank of C_1, C_2
SOR (Successive Over-Relaxation): An Example

for i = 1 TO m
 for j = 1 to n

• Is there communication-free parallelism?

• Can you find parallelism with communication? How?
Pipelineable Parallelism

for $i = 1$ TO m
 for $j = 1$ to n

Processor ID: p
Synchronization variable: $t[p]$ initialized to 0
WAIT: thread waits until the condition becomes true

for $j = 1$ to n
 if ($p==1$) or (WAIT($t[p-1] >= j$))
 $t[p]++;$

- Good locality
- Relaxed wavefront
- $O(n)$ synchronization overhead
Sequential Outer Loops

- No communication-free parallelism \rightarrow Outer loop must be sequential
- Treat the iteration number of a sequential loop as a partition in “time”

```plaintext
for i = 1 TO m
  for j = 1 to n
```

• Is j also a legal outer loop?

- Two independent basis vectors: $[1\ 0], [0\ 1]$
 - Any combination of $[1\ 0], [0\ 1]$ is a legal time partitioning
 - All original data dependences do not point backward in time
- Choice means parallelism
- The solution space has rank 2
 - 1 degree of pipelined parallelism
r-Dimensional Pipelineable Parallelism

- r-dimensions of legal time mapping:
 - r-1 degrees of parallelism
 - $O(n^{r-1})$ parallelism
 - $O(n)$ synchronization

- Synchronization
 - processor ID $(p_1, p_2, ..., p_{r-1})$:
 - r-1 outer loops map to each processor
 - Runs rth loop sequentially on each processor
 - iteration i_r for processor $(p_1, p_2, ..., p_{r-1})$, waits for iteration i_r for processors $(p_1-1, p_2, ..., p_{r-1})$,
 $(p_1, p_2-1, ..., p_{r-1}), ...,
 (p_1, p_2, ..., p_{r-1}-1)$.
2. Finding Maximum Pipelinable Parallelism

C: Time Partitioning of Computation to Time Step

For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$
Let $B_1i_1+b_1 \geq 0$, $B_2i_2+b_2 \geq 0$ be the corresponding loop bound constraints,

Find C_1, c_1, C_2, c_2:

$\forall i_1, i_2 \quad B_1i_1 + b_1 \geq 0, \quad B_2i_2 + b_2 \geq 0$

$(i_1 \leq i_2) \land (F_1i_1+f_1 = F_2i_2+f_2) \rightarrow C_1i_1+c_1 \leq C_2i_2+c_2$

with the objective of maximizing the rank of C_1, C_2
Example 1

2 time mappings:

\[
[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + [0]
\]

\[
[t] = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + [0]
\]

2 legal permutations

(a) \[
\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]

(b) \[
\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]
Example 2

\[
\begin{aligned}
&\text{for } i = 0 \text{ TO } m \\
&\quad \text{for } j = 0 \text{ to } n \\
&\quad \quad X[j+1] = (X[j] + X[j+1] + X[j+2]) / 3
\end{aligned}
\]

Is the above loop permutable as is?
(Can we make both i and j outer loops?)
Time Partitioning Results

2 time mappings:

\[t = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + [0] \]
\[t = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + [0] \]

Intuitively:
The time mapping makes all the dependences not point backwards.

for \(i = 0 \) to \(m \)
for \(j = 0 \) to \(n \)

\(X[j+1] = (X[j] + X[j+1] + X[j+2]) / 3 \)
Time Partitioning Results

2 time mappings:

\[[t] = [1 \ 0] \begin{bmatrix} i \\ j \end{bmatrix} + [0] \]

\[[t] = [1 \ 1] \begin{bmatrix} i \\ j \end{bmatrix} + [0] \]

2 permutations:

(a) \[\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \]

(b) \[\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \]

\[
\text{for } i = 0 \text{ TO } m \\
\text{for } j = 0 \text{ to } n \\
X[j+1] = (X[j] + X[j+1] + X[j+2]) / 3
\]
Fully Permutable Loop Nests

• Definition:
 A loop nest is **fully permutable** if all the loops in the nest can be permuted arbitrarily without changing the semantics of the program.

• Affine time partitioning algorithm finds fully permutable loop nests.

• Rank r time mappings
 – r possible outermost loops
 – Dependences do not point backward along r-axes
 – Rank r matrix (combining all time mappings) transforms the original loop into r-deep outermost fully permutable nest.
for i = 0 TO m
for j = 0 to n
 X[j+1]=(X[j]+X[j+1]+X[j+2])/3

for i' = 0 TO m
 for j' = i' to i'+n
 X[j'-i'+1] = (X[j'-i'] + X[j'-i'+1] + X[j'-i'+2])/3

Transformation

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]

Loop bounds (Using Fourier-Motzkin Elimination)

i' = i \quad 0 <= i' <= m
j' = i + j \quad 0 <= j' - i' <= n
j = j' - i'
3. Time Partitioning Algorithm

Compare:

Loops

F₁i₁ + f₁
F₂i₂ + f₂
C₁i₁ + c₁
C₂i₂ + c₂

Processor ID

Array

i₁ ≤ i₂

Loops

F₂i₂ + f₂
F₁i₁ + f₁
C₁i₁ + c₁
C₂i₂ + c₂

Time Stage
Comparing the Two Problems

Communication-Free Parallelism:
C: Space partitioning of Computation to Processor ID
For every pair of data dependent accesses \(F_{1i_1} + f_1 \) and \(F_{2i_2} + f_2 \)

Find \(C_1, c_1, C_2, c_2 \):
\[
\forall i_1, i_2 \quad F_{1i_1} + f_1 = F_{2i_2} + f_2 \rightarrow C_{1i_1} + c_1 = C_{2i_2} + c_2
\]
with the objective of maximizing the rank of \(C_1, C_2 \)

Pipelining Parallelism:
C: Time mapping of Computation to Time
For every pair of data dependent accesses \(F_{1i_1} + f_1 \) and \(F_{2i_2} + f_2 \)
Let \(B_{1i_1} + b_1 \geq 0, B_{2i_2} + b_2 \geq 0 \) be the corresponding loop bound constraints,

Find \(C_1, c_1, C_2, c_2 \):
\[
\forall i_1, i_2 \quad B_{1i_1} + b_1 \geq 0, \quad B_{2i_2} + b_2 \geq 0
\]
\[
(i_1 \leq i_2) \land (F_{1i_1} + f_1 = F_{2i_2} + f_2) \rightarrow C_{1i_1} + c_1 \leq C_{2i_2} + c_2
\]
with the objective of maximizing the rank of \(C_1, C_2 \)
Farkas Lemma

Finding the possible time dimensions c:
Given matrix A, find a vector c such that
for all vectors x such that $Ax \geq 0$,
$$c^T x \geq 0$$

Farkas Lemma, 1901 (real domain)
The primal system of inequalities
$$Ax \geq 0, \quad c^T x < 0$$
has a real-valued solution x
or, the dual system
$$A^T y = c, \quad y \geq 0$$
has a real-valued solution y, but never both.

Time partitioning: Find c such that $A^T y = c, \quad y \geq 0$

Note: Farkas Lemma: a theorem of the alternative
(no intuitive proof exists)
4. $O(1)$ Synchronization

What if there is only 1 legal outermost loop?

Example:
for (i=1; i<=n; i++) {
 X[i] = Y[i] + Z[i]; (s1)
 W[A[i]] = X[i]; (s2)
}

O(1) Synchronization Algorithm

for (i=1; i<=n; i++) {
 X[i] = Y[i] + Z[i]; (s1)
 W[A[i]] = X[i]; (s2)
}

- **Program dependence graph**
 - Nodes: statements
 - Edges: data dependence

- **Algorithm**
 - Split the program into a sequence of strongly connected components separated by O(1) barriers
 - Find communication-free parallelism in components (if no component has communication-free parallelism, leave as one partition).
Coarsest Parallelism with Minimum Synchronization

Find parallelism with coarsest parallelism with minimum synchronization

a. Find outermost communication-free parallelism
b. Find $O(1)$ synch. parallelism to partitions* found.
c. For each partition found,
 Find outermost fully permutable loop nest $O(n)$ synch
 Find $O(1)$ synch. parallelism on partitions* found.
d. Recursively apply c to inner loops if any.

*partition = code for each processor (if parallelism is found) full code otherwise
5. Blocking

for (i = 1; i < m; i++) {
 for (j = 1; j < n; j++) {
 }
}

Reduces synchronization
Increases locality
minimize communication
improve cache performance
(applicable to registers as well!)
How to Block Loops?

• Fully permutable loop nests can be blocked

• Let B be the block size
 1. Stripmine a loop into 2
 (This is legal for all loops)
 for (i = 0; i < n; i++) {
 <code>
 }
 =>
 for (ii = 0; ii < n; ii = ii+B) {
 for (i = ii; i < min(n,ii+B); i++) {
 <code>
 }
 }

2. If fully permutable: permute inner stripmined loop inside

Example: n = 7; B = 3
i = 0 1 2 3 4 5 6 7
ii = 0 i = 0 1 2
ii = 3 i = 3 4 5
ii = 6 i = 6 7
Blocking SOR

For simplicity, assume $m = n = 101; B = 10$

• Original program

  ```
  for (i = 1; i < 101; i++) {
      for (j = 1; j < 101; j++) {
      }
  }
  ```

• Stripmine loops

  ```
  for (ii = 1; ii < 101; ii = ii+10) {
      for (i = ii; i < ii+10; i++) {
          for (jj = 1; jj < 101; jj = jj+10) {
              for (j = jj; j < jj+10; j++) {
              }
          }
      }
  }
  ```

• Permute loops

  ```
  for (ii = 1; ii < 101; ii = ii+10) {
      for (jj = 1; jj < 101; jj = jj+10) {
          for (i = ii; i < ii+10; i++) {
              for (j = jj; j < jj+10; j++) {
              }
          }
      }
  }
  ```
Another Use of Blocking

- Coarse-grain parallel loops can be blocked to improve parallelism or locality in inner loops.

 - Example: multiprocessor, with instruction-level parallelism

    ```
    for (i = 0; i < n; i++) {
      for (j = 1; j < n; j++) {
        Z[i,j] = Z[i,j-1]
      }
    }
    
    => for (ii = 0; ii < n; ii+=16) {
      for (j = 0; j < n; j++) {
        for (i = ii; ii < min(n, ii+16); i++) {
          Z[i,j] = Z[i,j-1];
        }
      }
    }
    ```
6. Example: Neural Network

// 2D 3x3 convolution (stride=1)
for i = 0 to channels-1
 for y = 2 to Sy-1
 for x = 2 to Sx-1
 B[i,y,x] = A[i,y-2,x-2]*W1[0,0] + A[i,y-2,x-1]*W1[0,1] + ...
 A[i,y-1,x-2]*W1[1,0] + ...
 A[i,y-2,x-2]*W1[2,0] + ...

// ReLU (Rectified Linear Unit)
for i = 0 to channels-1
 for y = 2 to Sy-1
 for x = 2 to Sx-1
 B[i,y,x] = max(B[i,y,x], 0)

// 2D 3x3 convolution (Stride = 2)
for i = 0 to channels-1
 for y = 2 to (Sy-1)/2
 for x = 2 to (Sx-1)/2
 C[i,y,x] = B[i,2*y-2,2*x-2]*W2[0,0] + ...
 B[i,2*y-1,2*x-2]*W2[1,0] + ...

// Dense neural network layer
for i = 0 to channels-1
 for j = 0 to Sj-1
 for y = 2 to (Sy-1)/2
 for x = 2 to (Sx-1)/2
 D[i,j] += C[i,y,x]*W3[j,y,x]

// Softmax:
for i = 0 to channels-1
 for j = 0 to Sj-1
 T[i,j] = exp(D[i,j]);
 E[i] += T[i,j];

for j = 0 to Sj-1
 F[i,j] = T[i,j]/E[i]
Parallelization without Reduction Optimization

```
// 2D convolution (stride=1)
for i = 0 to channels-1  // Parallel loop
    for y = 2 to Sy-1     // Permutable loop nest
        for x = 2 to Sx-1  // Permutable loop nest
            // 2D convolution
            B[i,y,x] += A[i,y-2,x-2]*W1[0,0] + A[i,y-2,x-1]*W1[0,1] +...
            A[i,y-1,x-2]*W1[1,0] +...
            A[i,y,x-2]*W1[2,0]  +...
            // ReLU (Rectified Linear Unit)
            B[i,y,x] = max(B[i,y,x], 0)

// 2D convolution (Stride = 2)
if (y >=4) && (x >=4) && (y mod 2 == 0) && (x mod 2 == 0)
    C[i,y/2,x/2] += B[i,y-2,x-2]*W2[0,0] +...
    B[i,y-1,x-2]*W2[1,0] +...

// Dense neural network layer
for j = 0 to Sj-1  /* Parallel loop */
    for y = 2 to (Sy-1)/2
        for x = 2 to (Sx-1)/2
            D[i,j] += C[i,y,x]*W3[j,y,x]
            T[i,j] = exp(D[i,j]);

// Softmax
for j = 0 to Sj-1
    E[i] += T[i,j];
for j = 0 to Sj-1  /* Parallel loop */
    F[i,j] = T[i,j]/E[i]
```
Example: Cholesky Decomposition

for (i = 1; i <= N; i++) {
 for (j = 1; j <= i-1; j++) {
 for (k = 1; k <= j-1; k++)
 \(X[i,j] = X[i,j] - X[i,k] \times X[j,k]; \)
 \(X[i,j] = X[i,j] / X[j,j]; \}
 for (m=1; m<=i-1; m++)
 \(X[i,i] = X[i,i] - X[i,m] \times X[i,m]; \)
 \(X[i,i] = \sqrt{X[i,i]}; \}
}

for (i = 1; i <= N; i++) {
 for (j = 1; j <= i; j++) {
 for (k = 1; k <= i; k++)
 if (j<i && k<j)
 \(X[i,j] = X[i,j] - X[i,k] \times X[j,k]; \)
 if (j==k && j<i)
 \(X[i,j] = X[i,j] / X[j,j]; \)
 if (i==j && k<i)
 \(X[i,i] = X[i,i] - X[i,k] \times X[i,k]; \)
 if (i==j && j==k)
 \(X[i,i] = \sqrt{X[i,i]}; \})
}

Transformed Space

3-deep fully permutatable loop nest
2-dimensional parallelism
Summary: Two Key Algorithms

![Diagram showing two key algorithms with loops, array, processor ID, time stage, and formulas: \(F_1i_1 + f_1 \), \(F_2i_2 + f_2 \), \(C_1i_1 + c_1 \), \(C_2i_2 + c_2 \).]
General Lessons

• Elegant mathematical approach
 – Exploit regularity in affine array accesses with affine mappings
 – Better performance, easier to get a correct compiler

• Coarse-grain parallelism: canonical representation of parallelism
 – Can block to tailor the code for specific machine architecture:
 • instruction-level parallelism, SIMD operations, cache/register locality

• Compiler advantage: Portability across machine models