Lecture 10
Loop Transformations
for Communication-Free Parallelism

1. Examples of Loop Transformations
2. Affine Partitioning
3. Code Generation

Readings: Chapter 11-11.3, 11.6-11.7.4, 11.9-11.9.6
Shared Memory Machines

Performance on Shared Address Space Multiprocessors: Parallelism & Locality

Interconnect
1. Parallelism and Locality

- Parallelism DOES NOT imply speed up!

- Parallel performance:
 Improve locality with loop transformations
 - Minimize communication
 - Operations using the same data are executed on the same processor

- Sequential performance:
 Improve locality with loop transformations
 - Minimize cache misses
 - Operations using the same data are executed close in time.
Loop Permutation (Loop Interchange)

for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I-1,J]

for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I-1,J]

\[
\begin{bmatrix}
 j' \\
 i'
\end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix} \begin{bmatrix}
 i \\
 j
\end{bmatrix}
\]
for \(I = 1 \) to 4
\[
T[I] = A[I] + B[I] \quad (s1)
\]
for \(I' = 1 \) to 4
\[
C[I'] = T[I'] \times T[I'] \quad (s2)
\]

\[
\begin{array}{c}
\text{s1: } [j] = [1] [i] \\
\text{s2: } [j] = [1] [i']
\end{array}
\]
Loop Transformations

- Unimodular transforms on loop nests
 - Interchange
 - Skewing
 - Reversal
- Cross statement transforms
 - Loop fusion
 - Loop fission
 - Re-indexing
- How to combine them to get parallelism and locality?
2. Affine Partitioning:
A Contrived but Illustrative Example

\[
\text{FOR } j = 1 \text{ TO } n \\
\text{FOR } i = 1 \text{ TO } n \\
A[i,j] = A[i,j] + B[i-1,j]; \quad (S_1) \\
B[i,j] = A[i,j-1] \times B[i,j]; \quad (S_2)
\]
Best Parallelization Scheme

Algorithm finds **affine partition mappings** for each instruction:

- **S1**: Execute iteration \((i, j)\) on processor \(i-j\).
- **S2**: Execute iteration \((i, j)\) on processor \(i-j+1\).

SPMD code: Let \(p\) be the processor's ID number

```
if (1-n <= p <= n) then
  if [1 <= p) then
    B[p,1] = A[p,0] * B[p,1];  \(\text{ (S_2)}\)
    for i_1 = max[1,1+p) to min[n,n-1+p) do
        A[i_1,i_1-p] = A[i_1,i_1-p] + B[i_1-1,i_1-p];  \(\text{ (S_1)}\)
        B[i_1,i_1-p+1] = A[i_1,i_1-p] * B[i_1,i_1-p+1];  \(\text{ (S_2)}\)
    if (p <= 0) then
        A[n+p,n] = A[n+p,N] + B[n+p-1,n];  \(\text{ (S_1)}\)
```
Iteration Space

```
FOR i = 0 to 5
    FOR j = i to 7
        ...
```

- n-deep loop nests: n-dimensional polytope
- Iterations: coordinates in the iteration space
- Assume: iteration index is incremented in the loop
- Sequential execution order: lexicographic order
 - [0,0], [0,1], ..., [0,6], [0,7],
 [1,1], ..., [1,6], [1,7], ...

Maximum Parallelism & No Communication

For every pair of data dependent accesses $F_{1i_1+f_1}$ and $F_{2i_2+f_2}$

Find C_1, c_1, C_2, c_2:

$$\forall \; i_1, i_2 \quad F_{1i_1+f_1} = F_{2i_2+f_2} \rightarrow C_{1i_1+c_1} = C_{2i_2+c_2}$$

with the objective of maximizing the rank of C_1, C_2
Rank of Partitioning = Degree of Parallelism

Affine Mapping

\[
\begin{bmatrix}
0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\]

Rank

0
1
2

Mapped to same processor
Example 1: Loop Transform

Find affine partitioning: c_1, c_2, c_0 such that

$$p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0$$

Suppose iteration i,j & i', j' refer to same location

$$i = i' - 1$$
$$j = j'$$

No communication means:

$$c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0$$

$$c_1(i'-1) + c_2 j' + c_0 = c_1 i' + c_2 j' + c_0$$

$$c_1 = 0$$
$$p = c_2 j + c_0$$

Pick simplest c_2, c_0: $c_2 = 1$, $c_0 = 0$

$$p = j$$
3. Code Generation

- Naive
 - Each processor visits all the iterations
 - Executes only if it owns that iteration
- Optimization
 - Removes unnecessary looping and condition evaluation
for $I = 1$ to 4
 for $J = 1$ to 3
 $Z[I,J] = Z[I-1,J]$

for $P = 1$ to 3
 for $I = 1$ to 4
 $Z[I,P] = Z[I-1,P]$

SPMD (single program multiple data) code:
for $I = 1$ to 4
 $Z[I,P] = Z[I-1,P]$
Loop Permutation (Loop Interchange)

For I = 1 to 4
For J = 1 to 3
 \(Z[I,J] = Z[I-1,J] \)

\[
\begin{bmatrix}
 i' \\
 j'
\end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix} \begin{bmatrix}
 i \\
 j
\end{bmatrix}
\]

For P = 1 to 3
For I = 1 to 4
 \(Z[I,P] = Z[I-1,P] \)
Example 2: Loop Fusion

Find affine partitioning: $c_{1,1}, c_{1,0}, c_{2,1}, c_{1,0}$, such that

\[
s1: \begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} c_{1,1} \end{bmatrix} [i] + c_{1,0}
\]
\[
s2: \begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} c_{2,1} \end{bmatrix} [i'] + c_{2,0}
\]

Suppose iteration i & i' refer to the same location

\[i = i' \]

No communication means:

\[c_{1,1} i + c_{1,0} = c_{2,1} i' + c_{2,0} \]

\[c_{1,1} = c_{2,1} \]
\[c_{1,0} = c_{2,0} \]

Pick simplest values: $c_{1,1} = c_{2,1} = 1$, $c_{1,0} = c_{2,0} = 0$

$p = i; p = i'$
for I = 1 to 4
T[I] = A[I] + B[I] \hspace{1em} (s1)
for I' = 1 to 4
C[I'] = T[I'] \times T[I'] \hspace{1em} (s2)

\[
\begin{align*}
\mathbf{s1:} & \quad [p] = [1][i] \\
\mathbf{s2:} & \quad [p] = [1][i']
\end{align*}
\]

for P = 1 to 4
for I = 1 to 4
if (I == P)
T[I] = A[I] + B[I] \hspace{1em} (s1)
for I' = 1 to 4
if (I' == P)
C[I'] = T[I'] \times T[I'] \hspace{1em} (s2)

\[
\begin{align*}
\mathbf{s2:} & \quad C[P] = T[P] \times T[P]
\end{align*}
\]
Example 3: 2 Nested, Parallel Loops

Find affine partitioning: c_1, c_2, c_0 such that

$$p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0$$

Suppose iteration i, j & i', j' refer to same location

$$i = i'$$
$$j = j'$$

No communication means:

$$c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0$$

$$c_1 i' + c_2 j' + c_0 = c_1 i + c_2 j + c_0$$

No constraints
Two basis vectors: $[c_1 c_2] = [1 \ 0]$, or $[c_1 c_2] = [0 \ 1]$
Two answers for p: two degrees of parallelism

$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}$$
Example 3: 2 Nested, Parallel Loops

for I = 1 to 4
 for J = 1 to 3
 Z[I,J] = Z[I,J]+1

for p1 = 1 to 4
 for p2 = 1 to 3
 for I = 1 to 4
 for J = 1 to 3
 if (I==p1 & J == p2)
 Z[I,J] = Z[I,J]+1

for p1 = 1 to 4
 for p2 = 1 to 3
 Z[p1,p2] = Z[p1,p2]+1

\[
\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]
Optimizing Arbitrary Loop Nesting
Using Affine Partitions (chotst, NAS)

DO 1 J = 0, N
 I0 = MAX (-M, -J)
 DO 2 I = I0, -1
 DO 3 JJ = I0 - I, -1
 DO 3 L = 0, NMAT
 DO 2 L = 0, NMAT
 A(L,I,J) = A(L,I,J) * A(L,0,I+J)
 DO 4 L = 0, NMAT
 EPSS(L) = EPS * A(L,0,J)
 DO 5 JJ = I0, -1
 DO 5 L = 0, NMAT
 A(L,0,J) = A(L,0,J) - A(L, JJ, J) ** 2
 DO 4 L = 0, NMAT
 A(L,0,J) = 1. / SQRT (ABS (EPSS(L) + A(L,0,J)))
 DO 6 I = 0, NRHS
 DO 7 K = 0, N
 DO 8 L = 0, NMAT
 B(I,L,K) = B(I,L,K) * A(L,0,K)
 DO 7 JJ = 1, MIN (M, N-K)
 DO 7 L = 0, NMAT
 B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K+JJ) * B(I,L,K)
 DO 6 K = N, 0, -1
 DO 9 L = 0, NMAT
 B(I,L,K) = B(I,L,K) * A(L,0,K)
 DO 6 JJ = 1, MIN (M, K)
 DO 6 L = 0, NMAT
 B(I,L,K-JJ) = B(I,L,K-JJ) - A(L,-JJ,K) * B(I,L,K)

M. Lam
CS243: Loop Transformations
Chotst: Results with Affine Partitioning + Blocking

(Unimodular: a subset of affine partitioning for perfect loop nests)
Maximum Parallelism & No Communication

For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$

Find C_1, c_1, C_2, c_2:

$\forall i_1, i_2 \quad F_1i_1+f_1 = F_2i_2+f_2 \rightarrow C_1i_1+c_1 = C_2i_2+c_2$

with the objective of maximizing the rank of C_1, C_2