Lecture 10
Loop Transformations for Communication-Free Parallelism

1. Examples of Loop Transformations
2. Affine Partitioning
3. Code Generation

Readings: Chapter 11-11.3, 11.6-11.7.4, 11.9-11.9.6
Shared Memory Machines

Performance on Shared Address Space Multiprocessors: Parallelism & Locality

Interconnect
1. Parallelism and Locality

- Parallelism DOES NOT imply speed up!

- Parallel performance:
  Improve locality with loop transformations
  - Minimize communication
  - Operations using the same data are executed on the same processor

- Sequential performance:
  Improve locality with loop transformations
  - Minimize cache misses
  - Operations using the same data are executed close in time.

- Shift focus from finding “independent operations” to handling “dependent operations”.
- Important concept for manual parallelization!
Iteration Space

FOR $i = 0$ to 5
    FOR $j = i$ to 7
        ...

• n-deep loop nests: n-dimensional polytope
• Iterations: coordinates in the iteration space
• Assume: iteration index is incremented in the loop
• Sequential execution order: lexicographic order
    – $[0,0]$, $[0,1]$, ..., $[0,6]$, $[0,7]$, $[1,1]$, ..., $[1,6]$, $[1,7]$, ...

• A loop transform is legal
    – if all data dependences in the original loop nest are honored with sequential execution in the new loop.
Example 1: Loop Permutation (Loop Interchange)

(a)  
for $I = 1$ to $4$
for $J = 1$ to $3$
$Z[I,J] = Z[I-1,J]$

(b)  
for $J' = 1$ to $3$
for $I' = 1$ to $4$
$Z[I',J'] = Z[I'-1,J']$

1. Is the transform legal?
2. Is the inner loop or outer loop parallelizable in (a) and (b)?
3. Is (a) or (b) better for software pipelining?
4. Is (a) or (b) better for parallelizing across processors?
Example 2: Loop Fusion

for I = 1 to 4
   T[I] = A[I] + B[I] (s1)
for I' = 1 to 4
   C[I'] = T[I'] x T[I'] (s2)

for J = 1 to 4
   C[J] = T[J] x T[J] (s2)

\[
\begin{align*}
\text{s1: } & \quad \begin{bmatrix} j \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} i \end{bmatrix} \\
\text{s2: } & \quad \begin{bmatrix} j \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} i' \end{bmatrix}
\end{align*}
\]
Loop Transformations

- Many loop transforms have been proposed for parallelism and locality

- Loop nest transforms modeled as matrix transforms
  - Interchange
  - Skewing
  - Reversal

- Cross statement transforms
  - Loop fusion
  - Loop fission
  - Re-indexing

- How to combine them to get parallelism and locality?
2. Affine Partitioning:
A Contrived but Illustrative Example

FOR j = 1 TO n
    FOR i = 1 TO n
        A[i,j] = A[i,j]+B[i-1,j];  \(S_1\)
        B[i,j] = A[i,j-1]*B[i,j];  \(S_2\)
2. Affine Partitioning:
A Contrived but Illustrative Example

FOR j = 1 TO n
  FOR i = 1 TO n
    A[i,j] = A[i,j]+B[i-1,j];       \quad (S_1)
    B[i,j] = A[i,j-1]*B[i,j];       \quad (S_2)

\[ p = [1 \quad -1][i]_j + 0 \]
\[ p = [1 \quad -1][i]_j + 1 \]
Generate: SPMD (Single-Program Multiple Data) Code

Let \( p \) be the processor’s ID number

\[
\text{if } (1-n \leq p \leq n) \text{ then }
\]
\[
\text{if } [1 \leq p) \text{ then }
\]
\[
B[p,1] = A[p,0] \times B[p,1]; \quad \text{(S2)}
\]
\[
\text{for } i_1 = \max[1,1+p) \text{ to } \min[n,n-1+p) \text{ do}
\]
\[
A[i_1,i_1-p] = A[i_1,i_1-p] + B[i_1-1,i_1-p]; \quad \text{(S1)}
\]
\[
B[i_1,i_1-p+1] = A[i_1,i_1-p] \times B[i_1,i_1-p+1]; \quad \text{(S2)}
\]
\[
\text{if } (p \leq 0) \text{ then }
\]
\[
A[n+p,n] = A[n+p,N] + B[n+p-1,n]; \quad \text{(S1)}
\]
Communication-Free Parallelization Algorithm

• Key Constraint:
  Communication-free parallelism =>
  Operations using the same data must be mapped to the same processor!

• Two-step Algorithm

1. Given affine array indices in programs with arbitrarily nested loops
   – Find the affine processor mapping for each instruction
     that partitions the computation

2. Generate the SPMD code
For every pair of data dependent accesses $F_1 i_1 + f_1$ and $F_2 i_2 + f_2$

Find processor partitioning $C_1$, $c_1$, $C_2$, $c_2$:

$\forall i_1, i_2 \quad F_1 i_1 + f_1 = F_2 i_2 + f_2 \rightarrow C_1 i_1 + c_1 = C_2 i_2 + c_2$

with the objective of maximizing the rank of $C_1$, $C_2$
Rank of Partitioning = Degree of Parallelism

Affine Mapping

\[
\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1
\end{bmatrix}
\]

Iterations

Rank

0

1

2

mapped to same processor
Solving Equations Give the Desired Partitioning (in the book)

FOR \( j = 1 \) TO \( n \)
\[\text{FOR } i = 1 \text{ TO } n \]
\[A[i,j] = A[i,j] + B[i-1,j]; \quad (S_1)\]
\[B[i,j] = A[i,j-1]*B[i,j]; \quad (S_2)\]
**Example 1: Loop Transform**

1. Find affine partitioning: \( c_1, c_2, c_0 \) such that

\[
p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0
\]

2. Suppose iteration \( i,j \) & \( i', j' \) refer to same location

   \[
i = i' - 1
   
   j = j'
\]

3. No communication means:

   \[
c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0
   
   c_1 (i'-1) + c_2 j' + c_0 = c_1 i' + c_2 j' + c_0
\]

   \[
c_1 = 0
   
   p = c_2 j + c_0
\]

4. Pick simplest, non-null \( c_2, c_0 \):

   \[
c_2 = 1, c_0 = 0
   
   p = j
\]
3. Code Generation

• Naive
  – Each processor visits all the iterations
  – Executes only if it owns that iteration

• Optimization
  – Removes unnecessary looping and condition evaluation
Example 1: Code Generation

SPMD (single program multiple data) code:
for I = 1 to 4
    for J = 1 to 3
        Z[I,J] = Z[I-1,J]

for P = 1 to 3
    for I = 1 to 4
        Z[I,P] = Z[I-1,P]
Equivalent to Loop Permutation (Loop Interchange)

\[
\begin{align*}
\text{for } I &= 1 \text{ to } 4 \\
\text{for } J &= 1 \text{ to } 3 \\
Z[I,J] &= Z[I-1,J]
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix} p' \\ i' \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{for } P &= 1 \text{ to } 3 \\
\text{for } I &= 1 \text{ to } 4 \\
Z[I,P] &= Z[I-1,P]
\end{align*}
\]

Our algorithm performs the same effect in 2 steps (partitioning + code generation)
Useful for handling multiple statements in a program
Example 2: Loop Fusion

1. Find affine partitioning: \( c_{1,1}, c_{1,0}, c_{2,1}, c_{1,0} \), such that

\[
\begin{align*}
\text{s1: } & [p] = [c_{1,1}] [i] + c_{1,0} \\
\text{s2: } & [p] = [c_{2,1}] [i'] + c_{2,0}
\end{align*}
\]

2. Suppose iteration \( i \) & \( i' \) refer to the same location

\( i = i' \)

3. No communication means:

\[
c_{1,1} i + c_{1,0} = c_{2,1} i' + c_{2,0}
\]

\[
c_{1,1} = c_{2,1} \\
c_{1,0} = c_{2,0}
\]

4. Pick simplest, non-null values: \( c_{1,1} = c_{2,1} = 1, c_{1,0} = c_{2,0} = 0 \)

\( p = i; p = i' \)
for $I = 1$ to $4$
\[ T[I] = A[I] + B[I] \quad \text{(s1)} \]

for $I' = 1$ to $4$
\[ C[I'] = T[I'] \times T[I'] \quad \text{(s2)} \]

\[ p[j] = 1 \]

\[ p[i] = [1][i] \quad \text{s1:} \]

\[ p[i'] = [1][i'] \quad \text{s2:} \]

for $P = 1$ to $4$
\[ T[P] = A[P] + B[P] \quad \text{(s1)} \]

if $(I == P)$
\[ T[I] = A[I] + B[I] \quad \text{(s1)} \]

for $I' = 1$ to $4$
\[ C[I'] = T[I'] \times T[I'] \quad \text{(s2)} \]

Optimization

\[ p[j] = 1 \]

\[ p[i] = [1][i] \quad \text{s1:} \]

\[ p[i'] = [1][i'] \quad \text{s2:} \]
Example 3

Do you know how the algorithm works without simulating it?

for $I = 1$ to $4$

\[ T[I] = A[I] + B[I] \quad (s1) \]

for $I' = 1$ to $4$

\[ C[I'] = T[5-I'] \times T[5-I'] \quad (s2) \]

\[ \begin{align*}
\text{(s1)} & & & \\
\text{I} & & & \\
\end{align*} \]

\[ \begin{align*}
\text{(s2)} & & & \\
\text{I'} & & & \\
\end{align*} \]

for $J = 1$ to $4$

\[ T[J] = A[J] + B[J] \quad (s1) \]

\[ C[] = T[J] \times T[J] \quad (s2) \]

\[ \begin{align*}
\text{(s1)} & & & \\
\text{J} & & & \\
\end{align*} \]

\[ \begin{align*}
\text{s1: } & \quad [j] = [ \quad 1 \quad ] [i] \\
\text{s2: } & \quad [j] = [ \quad ] [i'] + [ \quad ] \\
\end{align*} \]
**Example 4: 2 Nested, Parallel Loops**

for I = 1 to 4  
  for J = 1 to 3  
    Z[I,J] = Z[I,J] + 1

1. Find affine partitioning: $c_1, c_2, c_0$ such that

\[
p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0
\]

2. Suppose iteration $i,j$ & $i', j'$ refer to same location
   
   $i = i'$  
   $j = j'$

3. No communication means:
   
   $c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0$
   
   $c_1 i' + c_2 j' + c_0 = c_1 i + c_2 j + c_0$

4. No constraints
   
   Two basis vectors: $[c_1 \ c_2] = [1 \ 0]$, or $[c_1 \ c_2] = [0 \ 1]$
   
   Two answers for $p$: two degrees of parallelism

\[
\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]
Example 4: 2 Nested, Parallel Loops

for $I = 1$ to $4$
    for $J = 1$ to $3$
        $Z[I,J] = Z[I,J] + 1$

for $p_1 = 1$ to $4$
    for $p_2 = 1$ to $3$
        for $I = 1$ to $4$
            for $J = 1$ to $3$
                if $(I == p_1 & J == p_2)$
                    $Z[I,J] = Z[I,J] + 1$

Optimization

$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}$

for $p_1 = 1$ to $4$
    for $p_2 = 1$ to $3$
        $Z[p_1,p_2] = Z[p_1,p_2] + 1$
**Optimizing Arbitrary Loop Nesting**

**Using Affine Partitions (chotst, NAS)**

```
DO 1 J = 0, N
   I0 = MAX ( -M, -J )
   DO 2 I = I0, -1
      DO 3 JJ = I0 - I, -1
         DO 3 L = 0, NMAT
         DO 2 L = 0, NMAT
      A(L, I, J) = A(L, I, J) * A(L, 0, I+J)
   DO 4 L = 0, NMAT
      EPSS(L) = EPS * A(L, 0, J)
   DO 5 JJ = I0, -1
      DO 5 L = 0, NMAT
         A(L, 0, J) = A(L, 0, J) - A(L, JJ, J) ** 2
      DO 1 L = 0, NMAT
         A(L, 0, J) = 1. / SQRT ( ABS (EPSS(L) + A(L, 0, J)) )
   DO 6 I = 0, NRHS
      DO 7 K = 0, N
         DO 8 L = 0, NMAT
            B(I, L, K) = B(I, L, K) * A(L, 0, K)
         DO 7 JJ = 1, MIN (M, N-K)
            B(I, L, K+JJ) = B(I, L, K+JJ) - A(L, -JJ, K+JJ) * B(I, L, K)
         DO 6 K = N, 0, -1
         DO 9 L = 0, NMAT
            B(I, L, K) = B(I, L, K) * A(L, 0, K)
         DO 6 JJ = 1, MIN (M, K)
            B(I, L, K-JJ) = B(I, L, K-JJ) - A(L, -JJ, K) * B(I, L, K)
```

M. Lam

CS243: Loop Transformations
Chotst: Results with Affine Partitioning + Blocking

(Unimodular: a subset of affine partitioning for perfect loop nests)
Maximum Parallelism & No Communication

For every pair of data dependent accesses $F_{1i_1} + f_1$ and $F_{2i_2} + f_2$

Find $C_1, c_1, C_2, c_2$:

$$\forall \ i_1, i_2 \quad F_{1i_1} + f_1 = F_{2i_2} + f_2 \rightarrow C_{1i_1} + c_1 = C_{2i_2} + c_2$$

with the objective of maximizing the rank of $C_1, C_2$
General Lesson

• Parallelizing compiler research
  – Compiler research
    • Studying examples to inspire code transforms
    • Years of heuristic transforms at the source level
  – Parallel algorithm research (systolic arrays)
    • Geometric transforms to map (simple) computation onto VLSI while minimizing communication
    • Inspired matrix transformation approach
  – Cross-disciplinary
    • Generalize matrix approach to arbitrary loop nesting

• Solving math equations is easy for compilers!

• But ... how many programs have communication-free parallelism?
  – An important building block for parallelism with communication