Lecture 10
Loop Transformations
for Communication-Free Parallelism

1. Examples of Loop Transformations
2. Affine Partitioning
3. Code Generation

Readings: Chapter 11-11.3, 11.6-11.7.4, 11.9-11.9.6

Shared Memory Machines

Performance on Shared Address Space Multiprocessors:
Parallelism & Locality
1. Parallelism and Locality

- Parallelism DOES NOT imply speed up!

- Parallel performance:
 Improve locality with loop transformations
 - Minimize communication
 - Operations using the same data are executed on the same processor

- Sequential performance:
 Improve locality with loop transformations
 - Minimize cache misses
 - Operations using the same data are executed close in time.

Loop Permutation (Loop Interchange)

for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I-1,J]

\[
\begin{bmatrix}
 j' \\
 i'
\end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix} \begin{bmatrix}
 j \\
 i
\end{bmatrix}
\]

for J' = 1 to 3
for I' = 1 to 4
Z[I',J'] = Z[I'-1,J']
Loop Fusion

\[
\text{for } I = 1 \text{ to } 4 \\
T[I] = A[I] + B[I] \quad (s1) \\
\text{for } I' = 1 \text{ to } 4 \\
C[I'] = T[I'] \times T[I'] \quad (s2)
\]

\[
\text{for } J = 1 \text{ to } 4 \\
C[J] = T[J] \times T[J] \quad (s2)
\]

Loop Transformations

- Unimodular transforms on loop nests
 - Interchange
 - Skewing
 - Reversal
- Cross statement transforms
 - Loop fusion
 - Loop fission
 - Re-indexing
- How to combine them to get parallelism and locality?
2. Affine Partitioning:
A Contrived but Illustrative Example

FOR j = 1 TO n
FOR i = 1 TO n
A[i,j] = A[i,j]+B[i-1,j]; (S1)
B[i,j] = A[i,j-1]*B[i,j]; (S2)

Best Parallelization Scheme

Algorithm finds affine partition mappings for each instruction:

S1: Execute iteration (i, j) on processor i-j.
S2: Execute iteration (i, j) on processor i-j+1.

SPMD code: Let p be the processor’s ID number

if (1-n <= p <= n) then
if [1 <= p) then
B[p,1] = A[p,0] * B[p,1]; (S2)
for i1 = max[1,1+p) to min[n,n-1+p) do
A[i1,i1-p] = A[i1,i1-p] + B[i1-1,i1-p]; (S1)
B[i1,i1-p+1] = A[i1,i1-p] * B[i1,i1-p+1]; (S2)
if (p <= 0) then
A[n+p,n] = A[n+p,N] + B[n+p-1,n]; (S1)
Iteration Space

```
FOR i = 0 to 5
    FOR j = i to 7
        ...
```

- n-deep loop nests: n-dimensional polytope
- Iterations: coordinates in the iteration space
- Assume: iteration index is incremented in the loop
- Sequential execution order: lexicographic order
 - [0,0], [0,1], ..., [0,6], [0,7],
 [1,1], ..., [1,6], [1,7], ...

Maximum Parallelism & No Communication

For every pair of data dependent accesses $F_{i_1} + f_1$ and $F_{i_2} + f_2$

Find C_i, c_1, C_2, c_2:

$\forall i_1, i_2 \quad F_{i_1} + f_1 = F_{i_2} + f_2 \rightarrow C_{i_1} + c_1 = C_{i_2} + c_2$

with the objective of maximizing the rank of C_i, C_2
Rank of Partitioning = Degree of Parallelism

Affine Mapping

<table>
<thead>
<tr>
<th>Rank</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Matrix 1]</td>
<td>![Matrix 2]</td>
<td>![Matrix 3]</td>
</tr>
</tbody>
</table>

Mapped to same processor

Solution to the Contrived Example

FOR j = 1 TO n
 FOR i = 1 TO n
 A[i,j] = A[i,j]+B[i-1,j]; \(S_1 \)
 B[i,j] = A[i,j-1]*B[i,j]; \(S_2 \)

\(S_1 \quad p = [1 \quad -1]^T \left\lceil \frac{i}{n} \right\rceil + 0 \\
S_2 \quad p = [1 \quad -1]^T \left\lceil \frac{i}{n} \right\rceil + 1 \)
Example 1: Loop Transform

Find affine partitioning: c_1, c_2, c_0 such that

$$p = \begin{bmatrix} c_1 \\ c_2 \\ \hline j \end{bmatrix} + c_0$$

Suppose iteration i,j & i',j' refer to same location

$$i = i' - 1$$
$$j = j'$$

No communication means:

$$c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0$$
$$c_1 (i'-1) + c_2 j' + c_0 = c_1 i' + c_2 j' + c_0$$

$$c_1 = 0$$
$$p = c_2 j + c_0$$

Pick simplest, non-null c_2, c_0:

$$c_2 = 1, c_0 = 0$$
$$p = j$$

3. Code Generation

- Naive
 - Each processor visits all the iterations
 - Executes only if it owns that iteration
- Optimization
 - Removes unnecessary looping and condition evaluation
Code Generation

for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I-1,J]

for P = 1 to 3
for I = 1 to 4
for J = 1 to 3
if (j == P)
 Z[I,J] = Z[I-1,J]

for P = 1 to 3
for I = 1 to 4
 Z[I,P] = Z[I-1,P]

SPMD (single program multiple data) code:
for I = 1 to 4
 Z[I,P] = Z[I-1,P]

Loop Permutation (Loop Interchange)

for I = 1 to 4
for J = 1 to 3
Z[I,J] = Z[I-1,J]

\[
\begin{bmatrix}
 p' \\
 i'
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 i \\
 j
\end{bmatrix}
\]

for P = 1 to 3
for I = 1 to 4
 Z[I,P] = Z[I-1,P]
Example 2: Loop Fusion

Find affine partitioning: $c_{1,1}$, $c_{1,0}$, $c_{2,1}$, $c_{2,0}$, such that

\[
\begin{align*}
\text{s1: } [p] &= [c_{1,1}] [i] + c_{1,0} \\
\text{s2: } [p] &= [c_{2,1}] [i'] + c_{2,0}
\end{align*}
\]

Suppose iteration i & i' refer to the same location

\[i = i' \]

No communication means:

\[
\begin{align*}
c_{1,1} i + c_{1,0} &= c_{2,1} i' + c_{2,0} \\
\end{align*}
\]

\[
\begin{align*}
c_{1,1} &= c_{2,1} \\
c_{1,0} &= c_{2,0}
\end{align*}
\]

Pick simplest, non-null values: $c_{1,1} = c_{2,1} = 1$, $c_{1,0} = c_{2,0} = 0$

$p = i$; $p = i'$
Example 3: 2 Nested, Parallel Loops

Find affine partitioning: \(c_1, c_2, c_0 \) such that

\[
p = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c_0
\]

Suppose iteration \(i, j \) & \(i', j' \) refer to same location

\[
i = i'
\]
\[
j = j'
\]

No communication means:

\[
c_1 i + c_2 j + c_0 = c_1 i' + c_2 j' + c_0
\]
\[
c_1 i' + c_2 j' + c_0 = c_1 i + c_2 j + c_0
\]

No constraints

Two basis vectors: \([c_1, c_2] = [1, 0]\), or \([c_1, c_2] = [0, 1]\)

Two answers for \(p \): two degrees of parallelism

\[
\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]

Example 3: 2 Nested, Parallel Loops

for \(I = 1 \) to \(4 \)
for \(J = 1 \) to \(3 \)

\[Z[I,J] = Z[I,J] + 1 \]

for \(p_1 = 1 \) to \(4 \)
for \(p_2 = 1 \) to \(3 \)
for \(I = 1 \) to \(4 \)
for \(J = 1 \) to \(3 \)

if \(I == p1 \) & \(J == p2 \)

\[Z[I,J] = Z[I,J] + 1 \]

for \(p1 = 1 \) to \(4 \)
for \(p2 = 1 \) to \(3 \)

\[Z[p1,p2] = Z[p1,p2] + 1 \]
Optimizing Arbitrary Loop Nesting Using Affine Partitions (chotst, NAS)

```plaintext
DO 1 J = 0, N
  IO = MAX ( -N, -J )
  DO 2 I = IO, -1
    DO 3 JJ = IO, -I, -1
      DO 3 L = 0, NMAT
        A(L,I,J) = A(L,I,J) - A(L,IO+I+J) * A(L,IO+JJ,J)
      END DO
    END DO
  END DO
  DO 4 L = 0, NMAT
    A(L,0,J) = A(L,0,J) * A(L,0,I+J)
  END DO
  DO 5 JJ = IO, -I, -1
    DO 5 L = 0, NMAT
      A(L,0,J) = A(L,0,J) - A(L,IO+J) ** 2
    END DO
  END DO
  DO 6 I = 0, NRHS
    DO 7 K = I, -1
      DO 8 L = 0, NMAT
        B(I,L,K) = B(I,L,K) * A(L,0,K)
      END DO
      DO 7 JJ = 1, MIN (M, K+JJ)
        DO 7 L = 0, NMAT
          B(I,L,K+JJ) = B(I,L,K+JJ) - A(L,-JJ,K) * B(I,L,K)
        END DO
      END DO
    END DO
  END DO
```

Chotst: Results with Affine Partitioning + Blocking

(Unimodular: a subset of affine partitioning for perfect loop nests)

![Graph showing speedup vs number of processors for Unimodular + Blocking and Affine Partitioning + Blocking]
Maximum Parallelism & No Communication

For every pair of data dependent accesses \(F_{1i1} + f_1 \) and \(F_{2i2} + f_2 \):

Find \(C_{i1}, c_1, C_{i2}, c_2 \):

\[
\forall i_1, i_2 : \quad F_{1i1} + f_1 = F_{2i2} + f_2 \rightarrow C_{i1} + c_1 = C_{i2} + c_2
\]

with the objective of maximizing the rank of \(C_1, C_2 \)