Partial Redundancy Elimination

CS243 Review Session
Full Redundancy

\[\begin{align*} x &= b + c \\ y &= b + c \\ z &= b + c \end{align*} \]
Partial Redundancy

\[x = b + c \]

\[z = b + c \]
Partial Redundancy

\[t = b + c \]
\[x = t \]
\[z = t \]
\[t = b + c \]
\[u = a + b \]
\[v = a + b \]
\[w = a + b \]

\[b = \text{read()} \]
Add blocks on critical edges
\[u = a + b \]
\[v = a + b \]
\[w = a + b \]

Anticipated expressions:
places where it is safe to place \(a + b \)
u = a + b
v = a + b
w = a + b

b = read()

Can delete added blocks where \(a + b \) is not anticipated
Available expressions: points where $a + b$ could be made available
Earliest: when can we earliest compute $a + b$
Earliest: when can we earliest compute \(a + b \)
How much can we postpone evaluating $a + b$?
Latest: need to compute $a + b$ here
u = a + b
v = a + b
w = a + b

b = read()

Latest: need to compute $a + b$ here
u = a + b

v = a + b

w = a + b

b = read()

Remove added blocks where we are not going to compute anything
\[u = t \]
\[t = a + b \]
\[v = t \]

Use a temporary variable to store the result

\[t = a + b \]
\[t = a + b \]
\[b = \text{read()} \]
\[t = a + b \]
\[u = t \]

\[t = a + b \]

\[v = t \]

\[t = a + b \]

\[w = t \]

\[b = \text{read()} \]

\[t = a + b \]
\[
\begin{align*}
 u & = t \\
 t & = a + b \\
 v & = t \\
 t & = a + b \\
 w & = t \\
 b & = \text{read()}
\end{align*}
\]

Result not used beyond the block in which the variable is defined.
u = t
v = a + b
t = a + b
w = t

Clean up unrequired temporaries

b = read()
\[u = t \]
\[v = a + b \]
\[t = a + b \]
\[w = t \]
\[b = \text{read()} \]
More Examples
\[i = 0 \]

\[a = b + c \]

\[i = i + 1 \]

\[i < 1000 \]

\[z = b + c \]
\[
i = 0
\]
\[
a = b + c
\]
\[
i = i + 1
\]
\[
i < 1000
\]
\[
z = b + c
\]
c = 2

B2

B3

B4

c = 2

B1

B5

B6

a = b + c

B7

d = b + c

B8

B9

e = b + c

B10

B11
B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

c = 2

a = b + c

d = b + c

e = b + c

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

t = b + c

a = t

d = t

e = t
Dominators

CS243 Review Session
Example

Draw the dominator tree for this control flow graph.
Draw the dominator tree for this control flow graph.
Example

IN = RED
OUT = BLACK

Draw the dominator tree for this control flow graph.
Aside: there are algorithms for constructing the dominator tree directly
- Tarjan’s algorithm (based on DFS)
- Buchsbaum’s algorithm
Example

IN = RED
OUT = BLACK

Find the back edges and natural loops in this graph.
Example

Find the back edges and natural loops in this graph.

Dominator Tree
Example

IN = RED
OUT = BLACK
BACK EDGE = ORANGE

Find the back edges and natural loops in this graph.

Natural loop for back edge $K \rightarrow M$: all nodes
* All nodes can reach K without passing through M
Post-dominators

How would we compute the post-dominators for this graph?
Definitions

A block B dominates block B’ if every path from the entry to B’ goes through B.

A block B postdominates block B’ if every path from B’ to the exit of the graph goes through B.

If B dominates B’ and B’ postdominates B, B and B’ are control equivalent.
* One is executed when and only when the other is
Example

if (a == 0) goto L

L:

c = b

e = d + d
Example

1. B1 and B3 are control equivalent.
Code Motion

If two blocks are control-equivalent, you may move instructions between the two (upward/downward code motion) assuming there are no conflicting data dependences

More to come next week: instruction scheduling lecture
SSA

Construction of the static single assignment form (SSA) requires dominance frontier information.

The dominance frontier of a node \(d \) is the set of all nodes \(n \) such that \(d \) dominates an immediate predecessor of \(n \), but \(d \) does not strictly dominate \(n \).

More to come in Homework 3: converting to SSA form