Lecture 6
Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

Reading: Chapter 8.8.4
Before next class: Chapter 10.1 - 10.2
I. Motivation

• **Problem**
 – Allocation of variables (pseudo-registers) to hardware registers in a procedure

• **Perhaps the most important optimization**
 – Directly reduces running time
 • memory access \rightarrow register access
 – Useful for other optimizations
 • e.g. PRE assumes old values are kept in registers

• **General Lessons**
 – How to abstract a problem according to program/machine characteristics?
 – important & often-overlooked approach to NP-Complete problems
Goal

• **Find an assignment for all pseudo-registers, if possible.**
 – Not trying to minimize the number of registers used

• **If there are not enough registers in the machine, choose registers to spill to memory**
Example

A = ...
IF A goto L1

B = ...
= A
D =
= B + D

L1: C = ...
= A
D =
= C + D
II. An Abstraction for Allocation & Assignment

• Intuitively
 – Two pseudo-registers interfere if at some point in the program they cannot both occupy the same register.

• Interference graph: an undirected graph, where
 – nodes = pseudo-registers
 – there is an edge between two nodes if their corresponding pseudo-registers interfere

• What is not represented
 – The extent of the interference between uses of different variables
 – Where in the program is the interference

Quiz: Why is this a good representation?
Register Allocation and Coloring

• A graph is \textit{n-colorable} if:
 – every node in the graph can be colored with one of the \(n \) colors such that two adjacent nodes do not have the same color.

• \textbf{Assigning n register (without spilling) = Coloring with n colors}
 – assign a node to a register (color) such that no two adjacent nodes are assigned same registers (colors).

• \textbf{Is spilling necessary? = Is the graph n-colorable?}

• \textbf{To determine if a graph is n-colorable is NP-complete, for n>2}
 • Too expensive
 • Heuristics
Quick Notes on NP-Completeness

• NP = P?
 – P: Polynomial
 – NP: Non-deterministic Polynomial
 • Exponential time on deterministic machines
 – A famous open problem in theory (unsolved after much research)

• NP-complete problems
 – If any can be solved in polynomial time, then NP = P

• Proving a problem is NP-complete \rightarrow License to use heuristics
III. Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring Algorithm (NP-Complete Problem)
Step 1a. Nodes in an Interference Graph

Quiz: What is the new interference graph with the additional code?
Step 1a. Nodes in an Interference Graph

A = ...
IF A goto L1

B = ...
 = A
D = ...
 = B + D
L1: C = ...
 = A
D = ...
 = D + C

A = 2
 = D

Quiz: What is the new inference graph with the additional code?

Answer: Use different registers for same variables if possible.
Live Ranges and Merged Live Ranges

• **Motivation:** to create an interference graph that is easier to color
 – Eliminate interference in a variable’s “dead” zones.
 – Increase flexibility in allocation:
 • can allocate same variable to different registers

• A **live range** consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
 – How to compute a live range? (homework)

• Two overlapping live ranges for the **same** variable must be merged

```
a = ...
  ...
 a = ...
```

```
... = a
```
Example (Revisited)

\[
A = \ldots (A_1) \\
\text{IF } A \text{ go to L1}
\]

B = \ldots = A

D = (D_2) = B + D

L1: C = \ldots = A

D = (D_1) = D + C

A = \ldots (A_2)

(Does not use A, B, C, or D.)

\[
\{A\} \quad \{A_1\} \quad \{A_1, B\} \\
\{B\} \quad \{A_1, B\} \quad \{A_1, B, D_2\} \\
\{B, D\} \quad \{A_1, B, D_2\} \\
\{D\} \quad \{A_1, B, D_2\} \\
\{\} \quad \{A_2, B, C, D_1, D_2\}
\]

liveness

\[
\{\} \quad \{\}\n\{A\} \quad \{A_1\} \\
\{A\} \quad \{A_1\} \\
\{A\} \quad \{A_1\} \quad \{A_1, C\} \\
\{C\} \quad \{A_1, C\} \\
\{C, D\} \quad \{A_1, C, D_1\} \\
\{D\} \quad \{A_1, C, D_1\} \\
\{D\} \quad \{A_1, B, C, D_1, D_2\} \\
\{A, D\} \quad \{A_2, B, C, D_1, D_2\} \\
\{A\} \quad \{A_2, B, C, D_1, D_2\} \\
\{A\} \quad \{A_2, B, C, D_1, D_2\}
\]

reaching-def

\[
\{A\} \quad \{A_1\} \\
\{A_1\} \\
\{A_1\} \quad \{A_1, C\} \\
\{C\} \quad \{A_1, C\} \\
\{A_1, C, D_1\} \\
\{A_1, C, D_1\} \\
\{A_1, B, C, D_1, D_2\} \\
\{A_2, B, C, D_1, D_2\} \\
\{A_2, B, C, D_1, D_2\}
\]
Merging Live Ranges

• **Merging definitions into equivalence classes**
 - Start by putting each definition in a different equivalence class
 - For each point in a program:
 • if (i) variable is live, and (ii) there are multiple reaching definitions for the variable, then:
 - merge the equivalence classes of all such definitions into one equivalence class

• **From now on, refer to merged live ranges simply as live ranges**

Given:

- A_1 overlaps with A_2
- A_3 overlaps with A_4
- A_1 overlaps with A_3

Quiz: How many merged live ranges are here?
Step 1b. Edges of Interference Graph

- **Intuitively:**
 - Two live ranges (necessarily of different variables) may interfere if they overlap at some point in the program.
 - Algorithm:
 - At each point in the program:
 - enter an edge for every pair of live ranges at that point.

![Diagram showing live ranges and edges](image.png)

- **An optimized definition & algorithm for edges:**
 - Algorithm:
 - check for interference only at the starts of each merged live range
 - Faster
 - Better quality

Quiz: Is this correct?
Example 2

Quiz: How many registers do we need for A and B?

IF .. goto L1

A = ...

L1: B = ...

IF .. goto L2

... = A

L2: ... = B

Lesson: Watch out for corner cases! Make sure the algorithm is correct!
Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring Algorithm (NP-Complete Problem)

Quiz: What would you do?
Observations

• **Reminder:** coloring for $n > 2$ is NP-complete

• **Observations:**
 – a node with degree $< n$ ⇒
 • can always color it successfully, given its neighbors’ colors
 – a node with degree $= n$ ⇒
 – a node with degree $> n$ ⇒
Coloring Algorithm

- **Algorithm:**
 - Iterate until stuck or done
 - Pick any node with degree < n
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - reverse process and add colors

- **Example (n = 3):**

- **Note:** degree of a node may drop in iteration
- Avoids making arbitrary decisions that make coloring fail
What Does Coloring Accomplish?

• **Done:**
 – colorable, also obtained an assignment

• **Stuck:**
 – colorable or not?

• Example: n = 2

Even if the algorithm gets stuck, it does not mean that it is not colorable.
What if Coloring Fails?

- **Use heuristics to improve its chance of success and to spill code**

 Build interference graph

 Iterative until there are no nodes left

 If there exists a node v with less than n neighbors
 place v on stack to register allocate

 else

 $v = \text{node chosen by heuristics}$

 (least frequently executed)

 place v on stack to register allocate (mark as spilled)

 remove v and its edges from graph

 While stack is not empty

 Remove v from stack

 Reinsert v and its edges into the graph

 Assign v a color that differs from all its neighbors if possible

 (guaranteed to be possible only for nodes not marked as spilled)
Summary

• **Problems:**
 – Given n registers in a machine, is spilling avoided?
 – Find an assignment for all pseudo-registers, whenever possible.

• **Solution:**
 – **Abstraction:** an interference graph
 • nodes: live ranges
 • edges: presence of live range at time of definition
 – **Register Allocation and Assignment** problems
 • equivalent to **n-colorability** of interference graph
 ➔ **NP-complete**
 – **Heuristics** to find an assignment for n colors
 • successful: colorable, and finds assignment
 • not successful: colorability unknown & no assignment

• **General lessons:**
 – Problem abstraction depends on program/machine characteristics
 – Minimize making arbitrary decisions for NP-complete problems
 – Careful about corner cases