Lecture 5

Partial Redundancy Elimination

I. Redundancy Optimizations
 • Global common subexpression elimination
 • Loop invariant code motion
 • Partial redundancy elimination

II. Lazy Code Motion Algorithm
 • Mathematical concept: a cut set
 • Basic technique (anticipation)
 • 3 more passes to refine algorithm

Reading: Chapter 9.5

Jens Knoop, Oliver Rüthing, Berhard Steffen, Lazy Code Motion, PLDI 1992. (Most Influential PLDI Paper Award, 2002)
Overview

- **Redundancy optimizations**
 - Global common subexpression elimination
 - Loop invariant code motion
 - Partial redundancy elimination (subsumes the above)
 - Originally formulated as 1 bi-directional analysis!

- **Partial redundancy: Lazy code motion algorithm**
 - Formulated as 4 separate uni-directional passes
 - backward, forward, forward, backward
 - Easier to analyze and better performance than 1 bi-directional analysis

- **Shows off the power and elegance of data flow**
 - Sees program as a graph
 - Uses the math concept of a cut set, used later in instruction scheduling
Outline of This Lecture

• **Overview**
 – Simple examples to build up your intuition
 – Introduce cut sets
 – Key: understand what the algorithm does without simulation
 – Details of the algorithm

• **Simple but hard**: Please work out examples after class immediately
I. Common Subexpression Elimination

Build up intuition about redundancy elimination with examples of familiar concepts

- A common expression may have different values on different paths!
- On every path reaching \(p \),
 - expression \(b+c \) has been computed
 - \(b, c \) not overwritten after the expression

\[
a = b + c
\]

\[
d = b + c
\]

\[
a = b + c
\]

\[
\]

\[
b = 7
\]

\[
da = b + c
\]

\[
d = b + c
\]

\[
b = 7
\]

\[
a = b + c
\]

\[
d = b + c
\]

\[
\]

\[
\]
Loop Invariant Code Motion

Given an expression \((b+c)\) inside a loop,
- does the value of \(b+c\) change inside the loop?
- is the code executed at least once?

Observations:
- Important optimization. Why?
- Unlike common subexpression elimination, need to place an instruction in a new program point! Where?
Partial Redundancy

- Can we place calculations of \(b+c \) such that no path re-executes the same expression?

- Partial Redundancy Elimination (PRE)
 - subsumes:
 - global common subexpression (full redundancy)
 - loop invariant code motion (partial redundancy for loops)

Unifying theory: More powerful, elegant \(\rightarrow \) but less direct.
II. Preparing the Flow Graph

- Original PRE: a bi-direction data flow problem! Hard to understand
- **Problem: Critical edges**
 - Source basic block has multiple successors
 - Destination basic block has multiple predecessors

- **Lazy Code Motion (Knoop 92)** – most influential paper award
 - Suggest changing the graph: getting rid of critical edges
 - Increase opportunities for optimization
 - Replace the bi-directional data flow problem into 4 unidirectional data flows – simpler to understand.
II. Preparing the Flow Graph

• **Definition: Critical edges**
 – source basic block has multiple successors
 – destination basic block has multiple predecessors

• **Modify the flow graph: (treat every statement as a basic block)**
 – To keep algorithm simple:
 restrict placement of instructions to the beginning of a basic block
 – Add a basic block for every edge that leads to a basic block with multiple predecessors (not just on critical edges)
Full Redundancy: A Cut Set in a Graph

A cut set of node p: a set of nodes that separate the start node from p

Full redundancy at p: expression $a+b$ redundant on all paths
 - there exists a cut set containing calculations of $a+b$
 - and a, b, are not redefined
Partial Redundancy: Completing a Cut Set

- **Partial redundancy at p**: redundant on some but not all paths
 - Add operations to create a cut set containing \(a+b \)
- **Constraint on placement: no wasted operation**
 - \(a+b \) is anticipated at B if its value computed at B will be used along ALL subsequent paths
 - \(a, b \) not redefined before use, no branches that lead to exit without using \(a+b \)
- **Range where \(a+b \) is anticipated → Choice**
- **Greedy**: Place operations at the earliest frontier to minimize redundancy
Pass 1: Anticipated Expressions

This pass does most of the heavy lifting in eliminating redundancy

- **Backward pass: Anticipated expressions**

 Anticipated[b].in: Set of expressions anticipated at the entry of b

 - An expression is anticipated if its value computed at point p will be used along ALL subsequent paths

<table>
<thead>
<tr>
<th>Domain</th>
<th>Anticipated Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets of expressions</td>
<td>backward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>$f_b(x) = \text{EUse}_b \cup (x \cdot \text{EKill}_b)$</td>
</tr>
<tr>
<td></td>
<td>EUse: used exp, EKill: exp killed</td>
</tr>
<tr>
<td>Boundary</td>
<td>in[exit] = \emptyset</td>
</tr>
<tr>
<td>Initialization</td>
<td>in[b] = {all expressions}</td>
</tr>
</tbody>
</table>

- **First approximation:**
 - place operations at the earliest frontier of anticipation (boundary from “not anticipated” to “anticipated”)

 e.g. $c = a + b$
 - EUse: $a + b$
 - EKill: all exp using c
Examples (1)

See the algorithm in action

(Added basic blocks assumed; not shown for simplicity)
Examples (2)

Can Partial Redundancy Elimination eliminate all partial redundancy?

\[
x = a + b
\]
\[
z = a + b
\]
Code Duplication

• Code duplication can reduce redundancy

• Cost: larger code size
 → can be costly if it causes more misses in the instruction cache

• Code duplication not used for partial redundancy elimination
 – Used in instruction scheduling for parallelism
Examples (3)

Do you know how the algorithm works without simulating it?
Pass 2: Place As Early As Possible

There is still some redundancy left!

- First approximation: frontier between “not anticipated” & “anticipated”
- Complication: Anticipation may oscillate

\[\text{earliest}(b) = \text{anticipated}[b].in \text{- available}[b].in \]

- An anticipation frontier may cover a subsequent frontier.
 - Once an expression has been anticipated (and assumed evaluated) it is “available” to subsequent frontiers → no need to re-evaluate.
- \(e \) will be **available at \(p \)** if \(e \) has been “anticipated but not subsequently killed” on all paths reaching \(p \)
- **Place expression at the earliest point anticipated and not already available**
 - \(\text{earliest}(b) = \text{anticipated}[b].in - \text{available}[b].in \)
Available Expressions

- **e will be available at p** if e has been “anticipated but not subsequently killed” on all paths reaching p

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>forward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>$f_b(x) = (\text{Anticipated}[b].\text{in} \cup x) - \text{EKill}_b$</td>
</tr>
<tr>
<td>Boundary</td>
<td>$\text{out}[\text{entry}] = \emptyset$</td>
</tr>
<tr>
<td>Initialization</td>
<td>$\text{out}[b] = {\text{all expressions}}$</td>
</tr>
</tbody>
</table>
Early Placement

• **earliest(b)**
 – set of expressions added to block b under early placement

• **Place expression at the earliest point anticipated and not already available**
 – earliest(b) = anticipated[b].in - available[b].in

• **Algorithm**
 – For all basic block b,
 if x+y ∈ earliest[b]
 at beginning of b:
 let t be the unique variable representing x+y
 add t = x+y,
 replace every original x+y in the program by t
Pass 3: Lazy Code Motion

Let’s be lazy without introducing redundancy.

Delay without creating redundancy to reduce register pressure

An expression e is **postponable** at a program point p if

- all paths leading to p have seen the earliest placement of e but not a subsequent use

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>forward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>$f_b(x) = (\text{earliest}[b] \cup x) - \text{EUse}_b$</td>
</tr>
<tr>
<td>\wedge</td>
<td>\cap</td>
</tr>
<tr>
<td>Boundary</td>
<td>out[entry] = \emptyset</td>
</tr>
<tr>
<td>Initialization</td>
<td>out[b] = {all expressions}</td>
</tr>
</tbody>
</table>
Latest: Latest Frontier of “postponable” Cut Set

- latest[b] = (earliest[b] ∪ postponable.in[b]) ∩ (EUse_b ∪ ¬(∪ s ∈ succ[b] (earliest[s] ∪ postponable.in[s])))
- OK to place expression: earliest or postponable.in
- Need to place at b if either
 - used in b, or
 - not OK to place in one of its successors
- Note: If postponable.out[b] and ¬ postponable.in[s], b is empty and there is only one successor s
Pass 4: Cleaning Up

Finally... this is easy, it is like liveness

• Eliminate temporary variable assignments unused beyond the current block
• Compute: Used.out[b]: sets of used (live) expressions at exit of b.

Used Expressions

<table>
<thead>
<tr>
<th></th>
<th>Used Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of expressions</td>
</tr>
<tr>
<td>Direction</td>
<td>backward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>$f_b(x) = (EUse[b] \cup x) - \text{latest}[b]$</td>
</tr>
<tr>
<td>\wedge</td>
<td>\cup</td>
</tr>
<tr>
<td>Boundary</td>
<td>$\text{in[exit]} = \emptyset$</td>
</tr>
<tr>
<td>Initialization</td>
<td>$\text{in}[b] = \emptyset$</td>
</tr>
</tbody>
</table>
Code Transformation

Original version: For each basic block b,
if $x+y \in \text{earliest}[b]$
 at beginning of b:
 let t be the unique variable representing $x+y$
 add $t = x+y$,
 replace every original $x+y$ in the program by t

New version: For each basic block b,
if $(x+y) \in (\text{latest}[b] \cap \neg \text{used.out}[b]))$
else
 if $x+y \in \text{latest}[b]$
 at beginning of b:
 let t be the unique variable representing $x+y$
 add $t = x+y$,
 replace every original $x+y$ in the program by t
4 Passes for Partial Redundancy Elimination

- **Heavy lifting**: Cannot introduce operations not executed originally
 - Pass 1 (backward): **Anticipation**: range of code motion
 - Placing operations at the frontier of anticipation gets most of the redundancy

- **Squeeze the last drop of redundancy**: An anticipation frontier may cover a subsequent frontier
 - Pass 2 (forward): **Availability**
 - **Earliest**: anticipated, but not yet available

- **Push the cut set out -- as late as possible**
 To minimize register lifetimes
 - Pass 3 (forward): **Postponability**: move it down provided it does not create redundancy
 - **Latest**: where it is used or the frontier of postponability

- **Clean up**: Remove unused assignment
 - Pass 4: **Used**: if not used, don’t do anything
Remarks

• **Powerful algorithm**
 – Finds many forms of redundancy in one unified framework

• **Illustrates the power of data flow**
 – Multiple data flow problems