Lecture 5

Partial Redundancy Elimination

I. Redundancy Optimizations
 • Global common subexpression elimination
 • Loop invariant code motion
 • Partial redundancy elimination

II. Lazy Code Motion Algorithm
 • Mathematical concept: a cut set
 • Basic technique (anticipation)
 • 3 more passes to refine algorithm

Reading: Chapter 9.5

Jens Knoop, Oliver Rüthing, Berhard Steffen, Lazy Code Motion, PLDI 1992. (Most Influential PLDI Paper Award, 2002)
Overview

• **Redundancy optimizations**
 – Global common subexpression elimination
 – Loop invariant code motion
 – Partial redundancy elimination (subsumes the above)
 • Originally formulated as 1 bi-directional analysis!

• **Partial redundancy: Lazy code motion algorithm**
 – Formulated as 4 separate uni-directional passes
 • backward, forward, forward, backward
 – Easier to analyze and better performance than 1 bi-directional analysis

• **Shows off the power and elegance of data flow**
 – Sees program as a graph
 – Uses the math concept of a cut set, used later in instruction scheduling
Outline of This Lecture

• **Overview**
 – Simple examples to build up your intuition
 – Introduce cut sets
 – Key: understand what the algorithm does without simulation
 – Details of the algorithm

• **Simple but hard**: Please work out examples after class immediately
I. Common Subexpression Elimination

Build up intuition about redundancy elimination with examples of familiar concepts

- A common expression may have different values on different paths!
- On every path reaching p,
 - expression b+c has been computed
 - b, c not overwritten after the expression
Loop Invariant Code Motion

- Given an expression \((b+c)\) inside a loop,
 - does the value of \(b+c\) change inside the loop?
 - is the code executed at least once?
Can we place calculations of $b+c$ such that no path re-executes the same expression?

Partial Redundancy Elimination (PRE)

- subsumes:
 - global common subexpression (full redundancy)
 - loop invariant code motion (partial redundancy for loops)

Unifying theory: More powerful, elegant → but less direct.
II. Preparing the Flow Graph

- A simple flow graph modification improves the result

• Can replace the bi-directional data flow with several unidirectional data flows \(\rightarrow\) much easier

- **Definition: Critical edges**
 - source basic block has multiple successors
 - destination basic block has multiple predecessors

- **Modify the flow graph: (treat every statement as a basic block)**
 - To keep algorithm simple: restrict placement of instructions to the beginning of a basic block
 - Add a basic block for every edge that leads to a basic block with multiple predecessors (not just on critical edges)
Full Redundancy: A Cut Set in a Graph

Key mathematical concept

- A cut set of node p: a set of nodes that separate the start node from p
- Full redundancy at p: expression $a+b$ redundant on all paths
 - there exists a cut set containing calculations of $a+b$
 - and a, b, are not redefined
Partial Redundancy: Completing a Cut Set

- **Partial redundancy at p**: redundant on some but not all paths
 - Add operations to create a cut set containing $a+b$
- **Constraint on placement**: no wasted operation
 - $a+b$ is anticipated at B if its value computed at B will be used along ALL subsequent paths
 - a, b not redefined before use, no branches that lead to exit without using $a+b$
- **Range where $a+b$ is anticipated**: Choice
- **Greedy**: Place operations at the earliest frontier to minimize redundancy
Pass 1: Anticipated Expressions

This pass does most of the heavy lifting in eliminating redundancy

- **Backward pass: Anticipated expressions**

 Anticipated[b].in: Set of expressions anticipated at the entry of b

 - An expression is anticipated if its value computed at point p will be used along ALL subsequent paths

<table>
<thead>
<tr>
<th>Domain</th>
<th>Anticipated Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>backward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = \text{EUse}_b \cup (x - \text{EKil}_b))</td>
</tr>
<tr>
<td>(\wedge)</td>
<td>(\cap)</td>
</tr>
<tr>
<td>Boundary</td>
<td>in[exit] = (\emptyset)</td>
</tr>
<tr>
<td>Initialization</td>
<td>in[b] = {all expressions}</td>
</tr>
</tbody>
</table>

- **First approximation:**

 - place operations at the earliest frontier of anticipation (boundary from “not anticipated” to “anticipated”)

 e.g. \(c = a + b \)

 EUse: \(a + b \)

 EKill: all exp using \(c \)
Examples (1)
See the algorithm in action

(Added basic blocks assumed; not shown for simplicity)
Examples (2)

Can Partial Redundancy Elimination eliminate all partial redundancy?

x = a + b

z = a + b

Can Partial Redundancy Elimination eliminate all partial redundancy?
Code Duplication

• Code duplication can reduce redundancy

• Cost: larger code size
 → can be costly if it causes more misses in the instruction cache

• Code duplication not used for partial redundancy elimination
 – Used in instruction scheduling for parallelism
Examples (3)

Do you know how the algorithm works without simulating it?
Pass 2: Place As Early As Possible

First approximation: frontier between “not anticipated” & “anticipated”

Complication: Anticipation may oscillate

An anticipation frontier may cover a subsequent frontier.
 - Once an expression has been anticipated, it is “available” to subsequent frontiers ➔ no need to re-evaluate.

Available at p if
 - e has been “anticipated but not subsequently killed” on all paths reaching p

Place expression at the earliest point anticipated and not already available
 - earliest(b) = anticipated[b].in - available[b].in

There is still some redundancy left!

\[
\begin{align*}
a &= 1 \\
x &= a + b \\
y &= a + b \\
a &= 1 \\
x &= a + b \\
y &= a + b \\
\end{align*}
\]
Available Expressions

- *e will be available at p* if e has been “anticipated but not subsequently killed” on all paths reaching p

<table>
<thead>
<tr>
<th>Available Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Direction</td>
</tr>
<tr>
<td>Transfer Function</td>
</tr>
<tr>
<td>Boundary</td>
</tr>
<tr>
<td>Initialization</td>
</tr>
</tbody>
</table>
Early Placement

- **earliest(b)**
 - set of expressions added to block b under early placement

- **Place expression at the earliest point anticipated and not already available**
 - earliest(b) = anticipated[b].in - available[b].in

- **Algorithm**
 - For all basic block b,
 - if x+y ∈ earliest[b]
 - at beginning of b:
 - let t be the unique variable representing x+y
 - add t = x+y,
 - replace every original x+y in the program by t
Pass 3: Lazy Code Motion

Let's be lazy without introducing redundancy.

Delay without creating redundancy to reduce register pressure

An expression \(e \) is **postponable** at a program point \(p \) if

- all paths leading to \(p \) have seen the earliest placement of \(e \) but not a subsequent use

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>forward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = (\text{earliest}[b] \cup x) - \text{EUse}_b)</td>
</tr>
<tr>
<td>Boundary</td>
<td>(\text{out}[\text{entry}] = \emptyset)</td>
</tr>
<tr>
<td>Initialization</td>
<td>(\text{out}[b] = {\text{all expressions}})</td>
</tr>
</tbody>
</table>
Latest: Latest Frontier of “postponable” Cut Set

latest[b] = (earliest[b] ∪ postponable.in[b]) ∩
(EUse_b ∪ ¬(∩s ∈ succ[b](earliest[s] ∪ postponable.in[s])))

• OK to place expression: earliest or postponable.in
• Need to place at b if either
 – used in b, or
 – not OK to place in one of its successors
• Note: If postponable.out[b] and ¬ postponable.in[s],
b is empty and there is only one successor s
Pass 4: Cleaning Up

Finally... this is easy, it is like liveness

- Eliminate temporary variable assignments unused beyond the current block
- Compute: Used.out[b]: sets of used (live) expressions at exit of b.

Used Expressions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>backward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>$f_b(x) = (EUse[b] \cup x) - \text{latest}[b]$</td>
</tr>
<tr>
<td>Boundary</td>
<td>in[exit] = \emptyset</td>
</tr>
<tr>
<td>Initialization</td>
<td>in[b] = \emptyset</td>
</tr>
</tbody>
</table>

\[x = a + b \]

not used afterwards
Code Transformation

Original version: For each basic block b,

if \(x+y \in \text{earliest}[b] \)

at beginning of b:

let \(t \) be the unique variable representing \(x+y \)

add \(t = x+y \),

replace every original \(x+y \) in the program by \(t \)

New version: For each basic block \(b \),

if \((x+y) \in (\text{latest}[b] \cap \neg \text{used.out}[b]) \) \{ \}

else

if \(x+y \in \text{latest}[b] \)

at beginning of \(b \):

let \(t \) be the unique variable representing \(x+y \)

add \(t = x+y \),

replace every original \(x+y \) in the program by \(t \)
4 Passes for Partial Redundancy Elimination

• **Heavy lifting**: Cannot introduce operations not executed originally
 – Pass 1 (backward): **Anticipation**: range of code motion
 – Placing operations at the frontier of anticipation gets most of the redundancy

• **Squeeze the last drop of redundancy**: An anticipation frontier may cover a subsequent frontier
 – Pass 2 (forward): **Availability**
 – **Earliest**: anticipated, but not yet available

• **Push the cut set out -- as late as possible**
 To minimize register lifetimes
 – Pass 3 (forward): **Postponability**: move it down provided it does not create redundancy
 – **Latest**: where it is used or the frontier of postponability

• **Clean up**: Remove unused assignment
 – Pass 4: **Used**: if not used, don’t do anything
Remarks

• **Powerful algorithm**
 – Finds many forms of redundancy in one unified framework

• **Illustrates the power of data flow**
 – Multiple data flow problems