Lecture 4

Advanced Topics: Constant Propagation Speed

I. Constant Propagation
II. Efficiency of Data Flow Analysis

Reading: Chapter 9.4
I. Constant Propagation/Folding

- At every basic block boundary, for each variable \(v \)
 - determine if \(v \) is a constant
 - if so, what is the value?

\[
\begin{align*}
 x &= 2 \\
 m &= x + e \\
 e &= 1 \\
 e &= 3 \\
 p &= e + 4
\end{align*}
\]
Semi-lattice Diagram

Example Flow Graphs

- Finite domain?
- Finite height?
Equivalent Definition (with a Meet Operator)

- **Meet Operator:**

<table>
<thead>
<tr>
<th></th>
<th>v1</th>
<th>v2</th>
<th>v1 ∧ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note: undef ∧ c_2 = c_2!
Example

\[x = 2 \quad p = x \]
Transfer Function

• Assume a basic block has only 1 instruction

• Let IN[b,x], OUT[b,x]
 • be the information for variable x at entry and exit of basic block b

• OUT[entry, x] = undef, for all x.

• Non-assignment instructions: OUT[b,x] = IN[b,x]

• Assignment instructions: (next page)
Constant Propagation (Cont.)

- **Let an assignment be of the form** $x_3 = x_1 + x_2$
 - “+” represents a generic operator
 - $\text{OUT}[b,x] = \text{IN}[b,x]$, if $x \neq x_3$

<table>
<thead>
<tr>
<th></th>
<th>$\text{IN}[b,x_1]$</th>
<th>$\text{IN}[b,x_2]$</th>
<th>$\text{OUT}[b,x_3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td>c_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NAC</td>
<td></td>
</tr>
</tbody>
</table>

Is this monotone?
1. Hold x_1 constant, lower x_2, show results do not rise.
2. Hold x_2 constant, lower x_1, show results do not rise.
3. The combination proves monotonicity.

- **Use:** $x \leq y$ implies $f(x) \leq f(y)$ to check if framework is monotone
 - $[v_1 v_2 ...] \leq [v_1' v_2' ...]$, $f([v_1 v_2 ...]) \leq f([v_1' v_2' ...])$
Distributive?

\[
\begin{align*}
x &= 2 \\
y &= 3 \\
z &= x + y
\end{align*}
\]

\[
\begin{align*}
x &= 3 \\
y &= 2 \\
z &= x + y
\end{align*}
\]
Summary of Constant Propagation

• A useful optimization
• Illustrates:
 – abstract execution
 – an infinite semi-lattice
 – a non-distributive problem
II. Efficiency of Iterative Data Flow

- Assume forward data flow for this discussion
- Speed of convergence depends on the ordering of nodes

- How about:

I. \[\text{Pre-order: } (1) \text{ A B C D E exit} \]

II. \[\text{Post-order: exit E D C B A} \]

\[\text{Reverse Post-order: A B C D E exit} \]
Depth-first Ordering: Reverse Postorder

- **Preorder traversal**: visit the parent before its children
- **Postorder traversal**: visit the children then the parent
- **Preferred ordering**: reverse postorder
- **Intuitively**
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node
“Reverse Post-Order” Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
OUT[Entry] = Ø

// Initialization for iterative algorithm
For each basic block B other than Entry
OUT[B] = Ø

// iterate
While (changes to any OUT occur) {
 For each basic block B other than Entry in reverse post order {
 IN[B] = ∪ (OUT[p]), for all predecessors p of B
 }
}
Consideration of Speed of Convergence

• Does it matter if we go around the same cycle multiple times?
• Reachability problems: “Does a path exist?”
 – Reaching definitions, liveness
 – Does not matter how many times we go around cycles
• Traversing cycles can make a difference: constant propagation

\[\begin{align*}
 a &= b \\
 b &= c \\
 c &= 1
\end{align*} \]
Speed of Convergence

- If cycles do not add info:
 - Labeling nodes in a path by their reverse postorder rank:
 - 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 - info flows down nodes of increasing reverse postorder rank in 1 pass
- Loop depth = max. # of “retreating edges” in any acyclic path
- **Maximum** # iterations in data flow algorithm = Loop depth + 2
 (2 is necessary even if there are no cycles)

- May not need the maximum depth
- Knuth showed: average loop depth in real functions = 2.75
Summary

• **Constant propagation**
 – abstract execution
 – an infinite semi-lattice
 – a non-distributive framework

• **Convergence**
 – Reverse postorder iterative algorithm
 • Faster than worklist algorithm for reachability-based data problems
 • The typical loop depth is low