Lecture 4

Advanced Topics: Constant Propagation Speed

I. Constant Propagation
II. Efficiency of Data Flow Analysis

Reading: Chapter 9.4
1. Constant Propagation/Folding

- At every basic block boundary, for each variable v
 - determine if v is a constant
 - if so, what is the value?

```
x = 2
m = x + e
```

```
e = 1
```

```
x = 2
m = x + e
```

```
e = 3
```

```
p = e + 4
```

Semi-lattice Diagram

Example Flow Graphs

- Finite domain?
- Finite height?
Equivalent Definition (with a Meet Operator)

- **Meet Operator:**

<table>
<thead>
<tr>
<th></th>
<th>v1</th>
<th>v2</th>
<th>v1 ∧ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>undefined</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note: undef ∧ c2 = c2!
Transfer Function

- Assume a basic block has only 1 instruction
- Let $\text{IN}[b,x]$, $\text{OUT}[b,x]$
 - be the information for variable x at entry and exit of basic block b

- $\text{OUT}[\text{entry}, x] = \text{undef}$, for all x.
- Non-assignment instructions: $\text{OUT}[b,x] = \text{IN}[b,x]$
- Assignment instructions: (next page)
Constant Propagation (Cont.)

- Let an assignment be of the form $x_3 = x_1 + x_2$
 - “+” represents a generic operator
 - $\text{OUT}[b,x] = \text{IN}[b,x]$, if $x \neq x_3$

<table>
<thead>
<tr>
<th>$\text{IN}[b,x_1]$</th>
<th>$\text{IN}[b,x_2]$</th>
<th>$\text{OUT}[b,x_3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>undef</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use: $x \leq y$ implies $f(x) \leq f(y)$ to check if framework is monotone

- $[v_1 \ v_2 \ldots] \leq [v_1' \ v_2' \ldots]$, $f([v_1 \ v_2 \ldots]) \leq f([v_1' \ v_2' \ldots])$
Distributive?

\[\begin{align*}
\text{x} &= 2 \\
\text{y} &= 3
\end{align*} \quad \begin{align*}
\text{x} &= 3 \\
\text{y} &= 2
\end{align*} \quad \begin{align*}
z &= \text{x} + \text{y}
\end{align*} \]
Summary of Constant Propagation

• A useful optimization
• Illustrates:
 – abstract execution
 – an infinite semi-lattice
 – a non-distributive problem
II. Efficiency of Iterative Data Flow

• Assume forward data flow for this discussion
• Speed of convergence depends on the ordering of node

• How about:

I.

II.

Pre-order: (1) A B C D E exit

Post-order: exit E D C B A

Reverse Post-order: A B C D E exit
Depth-first Ordering: Reverse Postorder

- **Preorder traversal**: visit the parent before its children
- **Postorder traversal**: visit the children then the parent
- **Preferred ordering**: reverse postorder
- **Intuitively**
 - depth first postorder visits the farthest node as early as possible
 - reverse postorder delays visiting farthest node
“Reverse Post-Order” Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
OUT[Entry] = Ø

// Initialization for iterative algorithm
For each basic block B other than Entry
OUT[B] = Ø

// iterate
While (changes to any OUT occur) {
 For each basic block B other than Entry in reverse post order {
 IN[B] = \(\cup (OUT[p]) \), for all predecessors p of B
 OUT[B] = \(f_B(IN[B]) \) \hspace{1em} // OUT[B]=gen[B] \cup (IN[B]-kill[B])
 }
}
Consideration of Speed of Convergence

• Does it matter if we go around the same cycle multiple times?

• Reachability problems: “Does a path exist?”
 – Reaching definitions, liveness
 – Does not matter how many times we go around cycles

• Traversing cycles can make a difference: constant propagation

\[
\begin{align*}
 a &= b \\
 b &= c \\
 c &= 1
\end{align*}
\]
Speed of Convergence

• If cycles do not add info:
 – Labeling nodes in a path by their reverse postorder rank:
 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 – info flows down nodes of increasing reverse postorder rank in 1 pass
• Loop depth = max. # of “retreating edges” in any acyclic path
• **Maximum** # iterations in data flow algorithm = Loop depth+2
 (2 is necessary even if there are no cycles)

```
1
  ↓
  ↓
  ↓
  ↓
  ↓
2→ 3→ 4→ 5
```

Loop depth = 2
Iterations needed = 2

```
1
  ↓
  ↓
  ↓
  ↓
  ↓
1→ 2→ 3→ 4→ 5
```

Loop depth = 4
Iterations needed = 3

• May not need the maximum depth
• Knuth showed: average loop depth in real functions = 2.75
Summary

• **Constant propagation**
 – abstract execution
 – an infinite semi-lattice
 – a non-distributive framework

• **Convergence**
 – **Reverse postorder iterative algorithm**
 • Faster than worklist algorithm for reachability-based data problems
 • The typical loop depth is low