Lecture 2
Introduction to Data Flow Analysis

I. Introduction
II. Example: Reaching definition analysis
III. Example: Liveness analysis
IV. A General Framework
 (Theory in next lecture)

Reading: Chapter 9.2
Overview of Data Flow Lectures 2-5

- High-level programming languages generate a lot of redundancy
- Many useful optimizations independently developed originally
 - Constant propagation
 - Common subexpressions
 - Loop invariant code motion
 - Dead code elimination
- A common framework: Dataflow (recurrent equations, fixed-points)
 - Theory: prove properties on the framework
 - Software engineering: implement / debug / optimize framework once
- Plan
 - L2: Basic examples to build intuition about dataflow
 - L3: Theory
 - L4: Optimization examples
 - L5: Partial redundancy elimination (PRE)
 Subsumes multiple optimizations by setting up 4 DataFlow problems
I. Compiler Organization

1. Front end
 - Program
 - Abstract Syntax Tree

2. High-level IR
 - High-level optimization
 - Parallelization
 - Loop transformations

4. Low-level IR
 - Low-level optimization
 - Redundancy elimination
 - Register allocation
 - Instruction scheduling

5. Code generation

 Machine code
Flow Graph

• **Basic block** = a maximal sequence of consecutive instructions s.t.
 - flow of control only enters at the beginning
 - flow of control can only leave at the end
 (no halting or branching except perhaps at end of block)

• **Flow Graphs**
 - Nodes: basic blocks
 - Edges
 • $B_i \rightarrow B_j$ iff B_j can follow B_i immediately in execution
What is Data Flow Analysis?

• **Data flow analysis:**
 – Flow-sensitive: sensitive to the control flow in a function
 – Intraprocedural analysis; only on pseudo variables (no aliases)

• **Examples of optimizations:**
 – Constant propagation
 – Common subexpression elimination
 – Dead code elimination

Examples of questions:

Value of x?

Which “definition” defines x?

Is the definition still meaningful (live)?

How would you code these optimizations?
Static Program vs. Dynamic Execution

- **Statically**: Finite program
- **Dynamically**: Can have infinitely many possible execution paths
- **Example of a data flow question:**
 - Which definition defines the value used in statement “b = a”?
- **Data flow analysis abstraction:**
 - For each point in the program:
 - Combines information of all the instances of the same program point.
 - The definitions that can reach point o are

Possible executions
1. 2. 3. ...
B1 B1 B1
 o
B3 oB3
B2
 o
B3
B2
 o
B3
B2

o: a point in the program
Reaching Definitions

- Every assignment is a definition
- A definition \(d\) reaches a point \(p\)
 - if there exists a path from the point immediately following \(d\) to \(p\)
 - such that \(d\) is not killed (overwritten) along that path.

Problem statement
- For each point in the program, determine
 if each definition in the program reaches the point
- A bit vector per program point, vector-length \(M\)
Data Flow Analysis Schema

• Build a flow graph (nodes = basic blocks, edges = control flow)
• Set up a set of equations between in[b] and out[b] for all basic blocks b
 – Effect of code in basic block:
 • Transfer function f_b relates in[b] and out[b], for same b
 – Effect of flow of control:
 • relates out[b₁], in[b₂] if b₁ and b₂ are adjacent
• Find a solution to the equations
Effects of a Statement

\[
d0: \ y = 3 \\
d1: \ x = 10 \\
d2: \ y = 11 \\
\text{if e}
\]

\[
d3: \ x = 1 \quad \quad \quad \quad d5: \ z = x \\
d4: \ y = 2 \quad \quad \quad \quad d6: \ x = 4
\]

Ignoring control flow

- \(f_s \): A transfer function of a statement
 - abstracts the execution with respect to the problem of interest
- For a statement \(s \) (d: \(x = y + z \))
 \[
 \text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s])
 \]
 - \textbf{Gen}[s]: definitions generated: \(\text{Gen}[s] = \{d\} \)
 - \textbf{Propagated} definitions: \(\text{in}[s] - \text{Kill}[s] \),
 where \(\text{Kill}[s] \) = set of all other defs to \(x \) in the rest of program
Effects of a Basic Block

\[\text{in}[B_0] \]

\[
\begin{array}{c|c}
\text{d0: } & y = 3 \\
\text{d1: } & x = 10 \\
\end{array}
\]

\[\text{out}[B_0] \]

- Transfer function of a statement \(s \):
 - \(\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s] - \text{Kill}[s]) \)
- Transfer function of a basic block \(B \):
 - Composition of transfer functions of statements in \(B \)
 - \(\text{out}[B] = f_B(\text{in}[B]) \)

 \[= f_{d1}f_{d0}(\text{in}[B]) \]

 \[= \text{Gen}[d_1] \cup (\text{Gen}[d_0] \cup (\text{in}[B] - \text{Kill}[d_0])) - \text{Kill}[d_1]) \]

 \[= (\text{Gen}[d_1] \cup (\text{Gen}[d_0] - \text{Kill}[d_1])) \cup \text{in}[B] - (\text{Kill}[d_0] \cup \text{Kill}[d_1]) \]

 \[= \text{Gen}[B] \cup (\text{in}[B] - \text{Kill}[B]). \]

 \(\text{Gen}[B] \): (Gen[d_1] \cup (Gen[d_0] - Kill[d_1]))

 locally exposed definitions (available at end of bb)

 \(\text{Kill}[B] \): Kill[d_0] \cup Kill[d_1] : set of definitions killed by \(B \)
Effects of the Edges (acyclic)

- **Join node**: a node with multiple predecessors
- **meet** operator (\(\wedge\)): \(\bigcup\)

 \[
 \text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup \ldots \cup \text{out}[p_n], \text{ where }
 \]

 \(p_1, \ldots, p_n\) are all predecessors of \(b\)

meet is a mathematical term that refers to the “meet of a semi-lattice”:

Not a meet of 2 control flow edges
Cyclic Graphs

- Equations still hold
 - \(\text{out}[b] = f_b(\text{in}[b]) \)
 - \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup \ldots \cup \text{out}[p_n], \ p_1, \ldots, p_n \text{ pred.} \)
- Find: fixed point solution
Reaching Definitions: An Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
out[Entry] = ∅

// Initialization for iterative algorithm
For each basic block B other than Entry
out[B] = ∅

// iterate
While (Changes to any out[] occur) {
 For each basic block B other than Entry {
 in[B] = ∪ (out[p]), for all predecessors p of B
 }
}
Summary of Reaching Definitions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reaching Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
</tr>
<tr>
<td>Transfer function $f_b(x)$</td>
<td>forward: $out[b] = f_b(in[b])$</td>
</tr>
<tr>
<td></td>
<td>$f_b(x) = Gen_b \cup (x - Kill_b)$</td>
</tr>
<tr>
<td></td>
<td>Gen_b: definitions in b</td>
</tr>
<tr>
<td></td>
<td>$Kill_b$: killed defs</td>
</tr>
<tr>
<td>Meet Operation</td>
<td>$in[b] = \cup out[predecessors]$</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>$out[entry] = \emptyset$</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>$out[b] = \emptyset$</td>
</tr>
</tbody>
</table>

Initialization is necessary for the iterative algorithm
Not a part of the problem definition
III. Live Variable Analysis

• Definition
 – A variable \(v \) is live at point \(p \) if
 • the value of \(v \) is used along some path in the flow graph starting at \(p \)
 • that is, \(v \) is not redefined along the path.
 – Otherwise, the variable is dead.

• Problem statement
 – For each basic block
 • determine if each variable is live in each basic block
 – Size of bit vector: one bit for each variable
Effects of a Basic Block (Transfer Function)

• **Observation:** Trace uses back to the definitions

 ![Diagram](image)

 - **Direction:** backward: \(\text{in}[b] = f_b(\text{out}[b]) \)

• **Transfer function** for statement \(s: x = y + z \)
 - generate live variables: \(\text{Use}[s] = \{y, z\} \)
 - propagate live variables: \(\text{out}[s] - \text{Def}[s], \text{Def}[s] = x \)
 - \(\text{in}[s] = \text{Use}[s] \cup (\text{out}(s) - \text{Def}[s]) \)

• **Transfer function** for basic block \(b \):
 - \(\text{in}[b] = \text{Use}[b] \cup (\text{out}(b) - \text{Def}[b]) \)
 - \(\text{Use}[b] \), set of locally exposed uses in \(b \), uses not covered by definitions in \(b \)
 - \(\text{Def}[b] \), set of variables defined in \(b \).
Across Basic Blocks

- **Meet operator (\(^\wedge\))**:
 - \(\text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup ... \cup \text{in}[s_n]\), \(s_1, ..., s_n\) are successors of \(b\)
- **Boundary condition:**
Example

```
\{p,q,r,g\} \rightarrow \{n,q,r\} \rightarrow \{n,r\} \rightarrow \{\} \rightarrow \{n,q\} \rightarrow \{\}
```
Liveness: Iterative Algorithm

input: control flow graph \(\text{CFG} = (N, E, \text{Entry}, \text{Exit}) \)

// Boundary condition
in[Exit] = \(\emptyset \)

// Initialization for iterative algorithm
For each basic block \(B \) other than Exit
in[B] = \(\emptyset \)

// iterate
While (Changes to any in[] occur) {
For each basic block \(B \) other than Exit {
out[B] = \(\cup \{ \text{in}[s] \} \), for all successors \(s \) of \(B \)
in[B] = f_B(out[B]) \quad // \text{in}[B]=\text{Use}[B] \cup (\text{out}[B] - \text{Def}[B])
}
IV. Framework

<table>
<thead>
<tr>
<th></th>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of definitions</td>
<td>Sets of variables</td>
</tr>
<tr>
<td>Direction</td>
<td>forward:</td>
<td>backward:</td>
</tr>
<tr>
<td></td>
<td>out[b] = f_b(in[b])</td>
<td>in[b] = f_b(out[b])</td>
</tr>
<tr>
<td></td>
<td>in[b] = \land out[pred(b)]</td>
<td>out[b] = \land in[succ(b)]</td>
</tr>
<tr>
<td>Transfer function</td>
<td>f_b(x) = Gen_b \cup (x - \text{Kill}_b)</td>
<td>f_b(x) = Use_b \cup (x - \text{Def}_b)</td>
</tr>
<tr>
<td>Meet Operation (\land)</td>
<td>\lor</td>
<td>\lor</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = \emptyset</td>
<td>in[exit] = \emptyset</td>
</tr>
<tr>
<td>Initial interior points</td>
<td>out[b] = \emptyset</td>
<td>in[b] = \emptyset</td>
</tr>
</tbody>
</table>
Thought Problem 1. “Must-Reach” Definitions

• **A definition D** *(a = b+c)* **must reach point P iff**
 – D appears at least once along on all paths leading to P
 – a is not redefined along any path after last appearance of D and before P

• **How do we formulate the data flow algorithm for this problem?**
Problem 2: A legal solution to (May) Reaching Def?

- Will the worklist algorithm generate this answer?
Problem 3. What are the algorithm properties?

- Correctness

- Precision: how good is the answer?

- Convergence: will the analysis terminate?

- Speed: how long does it take?