Lecture 13

Static Single Assignment &
Intro to Satisfiability Modulo Theories

1. Static single assignment (SSA)
2. Optimizations with SSA
3. Introduction to Satisfiability Modulo Theories (SMT)
4. SMT Application: Path Sensitive Program Analysis

Thanks to Clark Barrett, Nikolaj Bjørner Leonardo de Moura, Bruno Dutertre, Albert Oliveras, and Cesare Tinelli for contributing material used in this lecture.
SSA Motivation

• Simple question: for a given use of a variable, where was this variable defined?
 o For normal programs, requires dataflow
 o Each use can have multiple possible definitions
• Ideally, we would like if each use only has one possible definition
• How is this possible?

\[
\begin{align*}
 X &= 2 \\
 Y &= X + 2 \\
 X &= 3
\end{align*}
\]
Φ Functions

• Introduce Φ functions: for a block with multiple possible definitions, represent all the definitions that can reach that block
 - One operand for each predecessor
• Now we can assign each definition a unique name
• This type of representation is known as SSA (static single assignment)
 - Each variable has exactly one definition

\[
X_1 = 2 \quad \text{X}_2 = 3
\]

\[
X_3 = \Phi(X_1, X_2) \\
Y_1 = X_3 + 2
\]
What is SSA?

• Static Single Assignment form: type of intermediate representation
 o Each variable is assigned statically (in code) exactly once
 o Each definition is assigned a unique name

• Properties:
 o Makes def-use chains explicit
 o Definitions dominate uses (key property)
 o This makes certain optimizations simpler or more efficient

• Used in pretty much every modern optimizing compiler
 o Most notably, LLVM: Clang, rustc, swiftc, GHC, Julia
 o GCC (GNU Compiler Collection), Microsoft Visual C++ compiler
 o Java HotSpot JVM
 o V8 (Google Chrome), SpiderMonkey (Firefox), JavaScriptCore (Safari/WebKit)
Def-use chains

- Connects a definition (def) to a use
- In non-SSA programs, total size of def-use chains can be quadratic
- Example:

 \[
 \begin{align*}
 X &= 1 \\
 X &= 2 \\
 \cdots &
 \end{align*}
 \]

 Each definition of \(X \) has \(n \) uses

 \[
 \begin{align*}
 Y_1 &= X + 1 \\
 Y_2 &= X + 2 \\
 \cdots \\
 Y_n &= X + n \\
 \end{align*}
 \]

 = \(n^2 \) total uses!

- In SSA, exactly one definition for each variable → guaranteed linear
 - Definitions must dominate uses
 - A basic block dominates another (B1 dom B2) iff all paths from entry to B2 must pass through B1
Dominance

• Recall that a basic block x **dominates** another basic block y iff all control paths from entry to y must pass through x
 o If $x \neq y$, then x strictly dominates y (x sdom y)

o How to find dominance?
 • Dataflow (you did this for HW)
 • Faster algorithm: Lengauer-Tarjan ($O(E \alpha(E, N))$ time)
 o α is less than 5 for all practical inputs
Inserting Φ Functions

• Suppose basic block A has a definition of variable V
• Which blocks B need a Φ function for variable V? *(will worry about the operands later)*
 - If all predecessors of block x are dominated by A (equiv: A sdom x),
 a definition to V (at A, or in a block that strictly dominates x) must reach the entry to b.
 - To avoid redundant Φ functions,
 only insert at earliest possible block for each path where there can be multiple definitions.
 - B is not strictly dominated by A
 - One of B’s predecessors must be dominated by A: otherwise, we could insert at predecessor
 i.e. B is in the dominance frontier of A
Dominance Frontier

- Dominance frontier of a basic block A
 - $\text{DF}(A) = \text{set of blocks } B \text{ where } A \text{ does not strictly dominate } B,$
 and some predecessor of B is dominated by A.
- $\text{DF}(1)\,?$
- $\text{DF}(5)\,?$
Where to Insert Φ Functions: Iterated Dominance Frontier

- For a given variable v, let $\text{defs}(v)$ be the set of blocks that define v.
 - Ex: $\text{defs}(X) = \{1, 3\}$.
- Insert Φ functions at $\bigcup_{A \in \text{defs}(v)} \text{DF}(A)$.
 - Defn: $\text{DF}(S) = \bigcup_{A \in S} \text{DF}(A)$ for a set of blocks S.
 - Ex: $\text{DF}(\text{defs}(X)) = \{2, 3, 7\}$.
- These are new definitions!
- Insert Φ functions at $\text{DF}(\text{DF}(\text{defs}(v))), \text{DF}(\text{DF}(\text{DF}(\text{defs}(v)))), \ldots$
 - Define $\text{DF}_1(S) = \text{DF}(S)$
 $\text{DF}_{i+1}(S) = \text{DF}(S \cup \text{DF}_i(S))$
 - Iterated dominance frontier $\text{DF}^+(S)$ is the limit $\text{DF}_\infty(S)$.
 - Ex: $\text{DF}^+(\text{defs}(X)) = \{2, 3, 7, 9\}$.

Note: we are only deciding where to insert Φ functions; we fill in the operands later.
SSA Form Overview

• Converting to SSA form:
 o Insert Φ functions
 o Assign unique names to definitions
 o Propagate definitions to uses (including operands in Φ functions)

• Perform optimizations...

• Converting out of SSA form:
 o For each Φ function, insert a copy in predecessors
 o Remove Φ functions
2. On-the-Fly Optimizations

- We can optimize "on the fly" while constructing the SSA form.
- Each variable only has one definition → cheap to keep some information per variable during construction.
- Simple optimizations:
 - Arithmetic simplification
 - Constant folding
 - Copy propagation
 - Common subexpression elimination
 - Needs to maintain some information per expression
- Without doing dataflow, can miss optimization opportunities in loops

Sparse Conditional Constant Propagation

- Standard constant propagation cannot deduce that the statement Y4 = 5 is never executed.
- Solution: assume each block is not executed until shown otherwise.
 - Perform dataflow on
 - Variables: standard constant prop lattice
 - Blocks: top (not executed) or bottom (executed)
- Use use-def information to quickly propagate information from definitions to uses.
- A similar approach can be used for aggressive dead code elimination.
3. What is Satisfiability Modulo Theories (SMT)?

- Satisfiability
 - the problem of determining whether a formula has a model (an assignment that makes the formula true)

- SAT: Satisfiability of *propositional formulas*
 - A model is a truth assignment to Boolean variables
 - SAT solvers: check satisfiability of propositional formulas
 - Decidable, NP-complete

- SMT: Satisfiability modulo theories
 - Satisfiability of first-order formulas containing operations from background theories such as arithmetic, arrays, uninterpreted functions, etc.
 - E.g. $g(a) = c \land f(g(a)) \neq f(c)$
 - SMT Solvers:
 - check satisfiability of SMT formulas with respect to a theory
Use of SMT for Program Correctness & Test Generation

- Precision: Path sensitivity

- Is assertion A in a program?
 If it is not true, find an input that triggers the error

- SMT formulation:
 Given an assertion A,
 can we generate an input that triggers an error on a given path p?
 - Let F be the formula representing the execution of p
 - Is the formula $F \land \neg A$ satisfiable?
 - Not satisfiable? No error on that path
 - Satisfiable? Find 1 assignment that satisfies the formula
 (1 set of test inputs)
Each Statement is a Logical Clause

Program Assume data array bound is \([0, N-1]\)

1 void ReadBlocks(int data[], int cookie)
2 {
3 int i = 0;
4 while (true)
5 {
6 int next;
7 next = data[i];
8 if (!((i < next && next < N)) return;
9 i = i + 1;
10 for (; i < next; i = i + 1){
11 if (data[i] == cookie)
12 i = i + 1;
13 else
14 Process(data[i]);
15 }
16 }
17 }

One execution path

Static Single Assignment (SSA)

3 \(i_1 = 0;\)

7 \(next_1 = data_0[i_1];\)

8 \(i_1 < next_1 \&\& next_1 < N_0\)

9 \(i_2 = i_1 + 1;\)

10 \(i_2 < next_1;\)

11 \(data_0[i_2] = cookie_0;\)

12 \(i_3 = i_2 + 1;\)

10 \(i_4 = i_3 + 1;\)

10 !(i_4 < next_1);

7 \(next_2 = data_0[i_4];\)
An Execution Path as a Logic Formula

Program Assume data array bound is [0, N-1]

1 void ReadBlocks(int data[], int cookie) {
2 int i = 0;
3 while (true) {
4 int next;
5 next = data[i];
6 if (!(i < next && next < N)) return;
7 i = i + 1;
8 for (; i < next; i = i + 1) {
9 if (data[i] == cookie)
10 i = i + 1;
11 else
12 Process(data[i]);
13 }
14 }
15 }
16 }

One execution path (SSA)

\[
F = \begin{cases}
3 \ i_1 = 0; \\
7 \ next_1 = data_0 [i_1]; \\
8 \ i_1 < next_1 \&\& \ next_1 < N_0 \\
9 \ i_2 = i_1 + 1; \\
10 \ i_2 < next_1; \\
11 \ data_0 [i_2] = cookie_0; \\
12 \ i_3 = i_2 + 1; \\
13 \ i_4 = i_3 + 1; \\
14 \ ! (i_4 < next_1); \\
15 \ next_2 = data_0 [i_4];
\end{cases}
\]

Line 7: Array bound assertion \(A: \)

\[(0 \leq i_1 \land i_1 < N_0)\]
Checking for Out-of-Bound Array Access (Line 7, \textit{iteration 1})

Program Assume data array bound is [0, N-1]

```c
1 void ReadBlocks(int data[], int cookie)
2 {
3   int i = 0;
4   while (true)
5     {
6       int next;
7       next = data[i];
8       if (!(i < next && next < N)) return;
9       i = i + 1;
10      for (; i < next; i = i + 1){
11         if (data[i] == cookie)
12           i = i + 1;
13         else
14           Process(data[i]);
15     }
16   }
17 }
```

One execution path (SSA)

\[
F = \begin{cases}
3 & i_1 = 0; \\
7 & \text{next}_1 = \text{data}_0 [i_1]; \\
8 & i_1 < \text{next}_1 \land \text{next}_1 < N_0 \\
9 & i_2 = i_1 + 1; \\
10 & i_2 < \text{next}_1; \\
11 & \text{data}_0 [i_2] = \text{cookie}_0; \\
12 & i_3 = i_2 + 1; \\
13 & i_4 = i_3 + 1; \\
14 & !(i_4 < \text{next}_1); \\
15 & \text{next}_2 = \text{data}_0 [i_4]; \\
\end{cases}
\]

Line 7: Array bound assertion \(A \):

\[
(0 \leq i_1 \land i_1 < N_0)
\]

1st execution of Line 7

Check: Is \(F \land \neg A \) satisfiable?

\[
i_1 = 0 \land \neg (0 \leq i_1 \land i_1 < N_0)
\]
Answer for Out-of-Bound Array Access (Line 7, iteration 1)

Program
Assume data array bound is [0, N-1]
1 void ReadBlocks(int data[], int cookie)
2 {
3 int i = 0;
4 while (true)
5 {
6 int next;
7 next = data[i];
8 if (!(i < next && next < N)) return;
9 i = i + 1;
10 for (; i < next; i = i + 1){
11 if (data[i] == cookie)
12 i = i + 1;
13 else
14 Process(data[i]);
15 }
16 }
17 }

One execution path (SSA)

Line 7: Array bound assertion A:

$$ (0 \leq i_1 \land i_1 < N_0) $$

⇒ maps to

$$ F = \{ 3 \ i_1 = 0; $$

1st execution of Line 7
Check: Is $F \land \neg A$ satisfiable?

$$ i_1 = 0 \land \neg(0 \leq i_1 \land i_1 < N_0) $$

Yes! $\{ i_1 \mapsto 0, \ N_0 \mapsto 0 \} \ \text{BUG!!} $
Checking for Out-of-Bound Array Access (Line 7, iteration 2)

Program Assume data array bound is [0, N-1]
 1 void ReadBlocks(int data[], int cookie)
 2 {
 3 int i = 0;
 4 while (true)
 5 {
 6 int next;
 7 next = data[i];
 8 if (!((i < next && next < N)) return;
 9 i = i + 1;
 10 for (; i < next; i = i + 1){
 11 if (data[i] == cookie)
 12 i = i + 1;
 13 else
 14 Process(data[i]);
 15 }
 16 }
 17 }

Line 7: Array bound assertion A:

$(0 \leq i_4 \land i_4 < N_0)$

One execution path (SSA)

$F = \langle$

3 $i_1 = 0;$

7 $next_1 = data_0 [i_1]$;

8 $i_1 < next_1 \land next_1 < N_0$

9 $i_2 = i_1 + 1;$

10 $i_2 < next_1$;

11 $data_0 [i_2] = cookie_0$;

12 $i_3 = i_2 + 1;$

10 $i_4 = i_3 + 1;$

10 $!(i_4 < next_1)$;

7 $next_2 = data_0 [i_4]$;

2^{nd} execution of Line 7

Check: Is $F \land \neg A$ satisfiable?

$F \land \neg (0 \leq i_4 \land i_4 < N_0)$

Yes! SMT solver finds an assignment that satisfies the proposition
Answer for Out-of-Bound Array Access (Line 7, iteration 2)

Program Assume data array bound is [0, N-1]
1 void ReadBlocks(int data[], int cookie)
2 {
3 int i = 0;
4 while (true)
5 {
6 int next;
7 next = data[i];
8 if (!(i < next && next < N)) return;
9 i = i + 1;
10 for (; i < next; i = i + 1){
11 if (data[i] == cookie)
12 i = i + 1;
13 else
14 Process(data[i]);
15 }
16 }
17 }

Line 7: Array bound assertion A:

$$(0 \leq i_4 \land i_4 < N_0)$$

One execution path (SSA)

$F = \uparrow$

3 $i_1 = 0$;
7 $next_1 = data_0[i_1]$;
8 $i_1 < next_1 \land next_1 < N_0$
9 $i_2 = i_1 + 1$;
10 $i_2 < next_1$;
11 $data_0[i_2] = cookie_0$;
12 $i_3 = i_2 + 1$;
10 $i_4 = i_3 + 1$;
7 $next_2 = data_0[i_4]$;
Checking the Whole Program All at Once

- A program has many execution paths

- Conditional statements
 - Represent alternative paths symbolically with one formula using SSA

- Loops
 - Optimistically: Unroll a few times
 - Catches many errors, but not all errors
Conditional Statements

- **Conditional statements:** φ functions in SSA

```plaintext
1 if (i > 0) {
2   a = 2;
3   b = 3;
4} else
5{
6   a = 3;
7   b = 2;
8}
9   c = a+b;
```

- **Assert A:** $c_3 = 5$
- **Substituting with constants,**

 F: $\varphi_1 = (i_0 > 0)$ \land $(\varphi_1 \rightarrow c_3 = 5) \land (\neg \varphi_1 \rightarrow c_3 = 5)$

 - Is $F \land \neg A$ satisfiable? (Substituting a_1 b_1 a_2 b_2 with constants)

 $\varphi_1 = (i_0 > 0) \land (\varphi_1 \rightarrow c_3 = 5) \land (\neg \varphi_1 \rightarrow c_3 = 5) \land (c_3 \neq 5)$

M. Lam
CS243: SMT
Applying the Resolution Rule to Example

- Is $F \land \neg A$ satisfiable?
 \[
 \varphi_1 = (i_0 > 0) \land (\varphi_1 \rightarrow c_3 = 5) \land (\neg \varphi_1 \rightarrow c_3 = 5) \land (c_3 \neq 5)
 \]

- Recall: $p \rightarrow q \equiv \neg p \lor q$
 \[
 \varphi_1 = (i_0 > 0) \land (\neg \varphi_1 \lor c_3 = 5) \land (\varphi_1 \lor c_3 = 5) \land (c_3 \neq 5)
 \]

- $F \land \neg A$ is not satisfiable
- The assertion A is true.

Resolution rule in propositional logic:

\[
\text{Given } p \lor A \text{ and } \neg p \lor B, \text{ add the resolvent } A \lor B
\]

\[
\begin{array}{c}
\text{Resolve} \\
\hline
p \lor A & \neg p \lor B \\
\hline
A \lor B
\end{array}
\]
Loops

• Optimistically: Unroll two times

```c
for (; i<next; i = i + 1){
   if (data[i] == cookie)
      i = i + 1;
   else
      Process(data[i]);
}
```

```c
if (i < next) {
   if (data[i] == cookie)
      i = i + 1;
   else
      Process(data[i]);
   i = i + 1;

   if (i < next) {
      if (data[i] == cookie)
         i = i + 1;
      else
         Process(data[i]);
      i = i + 1;
   }
}
```
Loops: Apply SSA

1 if (i < next) {
2 if (data[i] == cookie)
3 i = i + 1;
4 else
5 Process(data[i]);
6
7 i = i + 1;
8
9 if (i < next) {
10 if (data[i] == cookie)
11 i = i + 1;
12 else
13 Process(data[i]);
14
15 i = i + 1;
16 }
17 }

1 φ₁ = (i₀ < next₀);
2 φ₂ = (data₀ [i₀] == cookie₀);
3 i₁ = i₀ + 1;
4
5
6 i₂ = φ₂ ? i₁ : i₀;
7 i₃ = i₂ + 1;
8
9 φ₃ = (i₃ < next₀);
10 φ₄ = (data₀ [i₃] == cookie₀);
11 i₄ = i₃ + 1;
12
13
14 i₅ = φ₄ ? i₄ : i₃;
15 i₆ = i₅ + 1;
16 i₇ = φ₃ ? i₆ : i₃;
17 i₈ = φ₁ ? i₇ : i₀;

Unrolling the loop twice finds many (but not) all bugs
Major Categories of Program Analysis Tools

<table>
<thead>
<tr>
<th>Complete (Small programs)</th>
<th>Static Property Based</th>
<th>Dynamic Execution Based</th>
</tr>
</thead>
</table>
| **Verification** | *Prove a property in a program*
 Floyd-Hoare logic:
 \{pre-condition\} s \{post-condition\} | *(Symbolic) Model Checking (e.g. SMT)*
 Given a system model (sw/hw), simulate the execution to check if a property is true for all possible inputs. |
| Applicable to small programs | Symbolic: many states all at once |

<table>
<thead>
<tr>
<th>Incomplete (Large programs)</th>
<th>Static Analysis (e.g. Data flow)</th>
<th>Test case generation (e.g. SMT)</th>
</tr>
</thead>
</table>
| Abstract the program conservatively
 Find fixed-point for all possible executions | *Sound*: no false-negatives--find all bugs
 False-positives: false warnings
 If the analysis is too imprecise
 → *useless* | *No false-positives*: generate a test
 False-negatives: cannot find all bugs
 No correctness/security guarantees |
| | | |
Summary

- **SSA: Static single assignment**
 - A useful program representation
 - Facilitate optimizations, path-sensitive analysis
 - Used in many optimizations

- **SMT: Satisfiability Modulo Theories**
 - Application: Finds errors with path-sensitive analysis
 - Next class:
 - How to create an SMT solver?
 - What are other applications?