Lecture 11
Pipelined Parallelism

1. Intuition: Time mapping
2. Affine Time Partitioning Problem
3. Affine Time Partitioning Algorithm
4. Coarsest-Grain Parallelization

Readings: Chapter 11.8-11.9
C: Space partitioning of Computation to Processor ID
For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$

Find C_1, c_1, C_2, c_2:

\[\forall i_1, i_2 \quad F_1i_1+f_1 = F_2i_2+f_2 \rightarrow C_1i_1+c_1 = C_2i_2+c_2 \]

with the objective of maximizing the rank of C_1, C_2
1. SOR (Successive Over-Relaxation): An Example

\[
\text{for } i = 1 \text{ TO } m \\
\text{for } j = 1 \text{ to } n \\
\]

Quiz:
- Is there communication-free parallelism?
- Can you find parallelism with communication?
SOR (Successive Over-Relaxation): An Example

for $i = 1$ TO m
 for $j = 1$ to n

Focusing on sequential execution

- i is a legal outer loop
- Is j also a legal outer loop?
- Two independent basis vectors for the outer loop:
 - $[1 \quad 0], [0 \quad 1]$
 - Any combination of $[1 \quad 0], [0 \quad 1]$ is a legal (DoAll) outer loop!
- Example: $[1 \quad 1]$
SOR (Successive Over-Relaxation): An Example

for $i = 1$ TO m
 for $j = 1$ to n

Focusing on sequential execution
- i is a legal outer loop
- Is j also a legal outer loop?
- Two independent basis vectors for the outer loop:
 - $[1 \ 0], [0 \ 1]$
- Any combination of $[1 \ 0], [0 \ 1]$ is a legal (DoAll) outer loop!
- Example: $[1 \ 1]$
 - All original data dependences do not point backward in time
 - A wavefront of execution
SOR (Successive Over-Relaxation): An Example

\[
\text{for } i = 1 \text{ TO } m \\
\quad \text{for } j = 1 \text{ to } n \\
\quad A[i,j] = c \times (A[i-1,j] + A[i,j-1])
\]

Focusing on sequential execution
- Two independent basis vectors for the outer loop:
 \[
 \begin{bmatrix} 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}
 \]
- Any combination of \([1 \ 0], [0 \ 1]\) is a legal (DoAll) outer loop!
- Example: \([1 \ 2]\)
 - All original data dependences do not point backward in time
 - A wavefront of execution
General Observation

for \(i = 1 \) TO \(m \)
for \(j = 1 \) to \(n \)
 \(A[i,j] = c \times (A[i-1,j] + A[i,j-1]) \)

- Multiple legal outer loops:
 - Choice in execution \(\rightarrow \) there is parallelism
- 2 independent basis vectors
 - The solution space has rank 2
 - 1 degree of pipelined parallelism
- \(r \) independent basis vectors
 - The solution space has rank \(r \)
 - \(r - 1 \) degrees of pipelined parallelism

Choice means parallelism
Implementing Wavefronts Without Barriers

for $i = 1$ TO m
 for $j = 1$ to n

Assign each row i to a processor
Processor ID: \(p = i \)
Synchronization variable: \(t[p] = 0 \) (iterations executed)
WAIT: thread waits until the condition becomes true

for $j = 1$ to n
 if \((p==1)\) or \((\text{WAIT}(t[p-1] >= j))\)
 $t[p]++;

• Good locality
• Relaxed wavefront
• \(O(n) \) synchronization overhead
2. Recall: Maximum Parallelism & No Communication

C: Space partitioning of Computation to Processor ID
For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$

Find C_1, c_1, C_2, c_2:

$$\forall i_1, i_2 \quad F_1i_1+f_1 = F_2i_2+f_2 \rightarrow C_1i_1+c_1 = C_2i_2+c_2$$

with the objective of maximizing the rank of C_1, C_2
Problem Statement: Maximum Pipelinable Parallelism

C: Time Partitioning of Computation to Time Step
For every pair of data dependent accesses \(F_{1i_1+f_1} \) and \(F_{2i_2+f_2} \)
Let \(B_{1i_1+b_1} \geq 0, B_{2i_2+b_2} \geq 0 \) be the corresponding loop bound constraints,
Find \(C_1, c_1, C_2, c_2: \)
\[
\forall \ i_1, i_2 \quad B_{1i_1} + b_1 \geq 0, \quad B_{2i_2} + b_2 \geq 0 \\
(i_1 \leq i_2) \land (F_{1i_1+f_1} = F_{2i_2+f_2}) \rightarrow C_{1i_1+c_1} \leq C_{2i_2+c_2} \\
with the objective of maximizing the rank of \(C_1, C_2 \)
Example 1

(a)

```
for i = 1 TO m
    for j = 1 to n
```

2 independent time mappings:

\[
[t] = [1, 0] [i] + [0] \\
[t] = [0, 1] [j] + [0]
\]

- Solving the equations
 - yields two independent basic vectors: \([1, 0], [0, 1]\)
 - 2 possible legal outer loops
 - 1 degree of pipelined parallelism
Example 1

2 time mappings:

\[[t] = [1 \ 0] \begin{bmatrix} i \\ j \end{bmatrix} + [0] \]
\[[t] = [0 \ 1] \begin{bmatrix} i \\ j \end{bmatrix} + [0] \]

→ 2 legal permutations

(a) \[\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \]

(b) \[\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} \]

Quiz: How many degrees of parallelism is there?

- 2 legal outer loops
- If all loops in a nest can be outermost → the loop nest is **fully permutatable**
- 2 ways to pipeline
Example 2

for $i = 0$ TO m
for $j = 0$ to n
 $X[j+1] = (X[j] + X[j+1] + X[j+2]) / 3$

Is there communication-free parallelism?
Is the loop nest fully permutable?
Can we transform the code to make it permutable?
Applying Time Partitioning to Example 2

for $i = 0$ TO m
for $j = 0$ to n
$X[j+1] = (X[j] + X[j+1] + X[j+2]) / 3$

2 time mappings:

$[t] = [1 \ 0] \begin{bmatrix} i \\ j \end{bmatrix} + [0]$

$[t] = [1 \ 1] \begin{bmatrix} i \\ j \end{bmatrix} + [0]$

Intuitively:
The time mapping makes all the dependences not point backwards.
Time Partitioning Results

2 time mappings:

\[
[t] = [1 \ 0] \begin{bmatrix} i \\ j \end{bmatrix} + [0]
\]

\[
[t] = [1 \ 1] \begin{bmatrix} i \\ j \end{bmatrix} + [0]
\]

2 permutations:

(a) \[
\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]

(b) \[
\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}
\]

Quiz: How many degrees of parallelism?
Time Partitioning Results

2 time mappings:

\[t = [1 \ 0] [i] + [0] \]

\[t = [1 \ 1] [i] + [0] \]

2 permutations:

(a) \[t_1 = [1 \ 0] [i] \]

(b) \[t_1 = [1 \ 1] [i] \]

Intuitively: Transform so all dependences don’t point backwards in both axes.

Skew transform: \[\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \]

Quiz: Can we always skew to create permutable loop nests?
Recall

FOR $i = 0$ to 5
 FOR $j = i$ to 7
 ...

- Sequential execution order: lexicographic order
 - $[0,0]$, $[0,1]$, ..., $[0,6]$, $[0,7]$, $[1,1]$, ..., $[1,6]$, $[1,7]$, ...

- A loop transform is legal
 - if all data dependences in the original loop nest are honored with sequential execution in the new loop.

- Skewing by the number of iterations
 - fully permutable (a degenerate case)
 - the iterations execute sequentially
for $i = 0$ TO m
for $j = 0$ to n
\[X[j+1] = (X[j] + X[j+1] + X[j+2]) / 3 \]

\[
\begin{bmatrix}
 i' \\
 j'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 \\
 1 & 1
\end{bmatrix}
\begin{bmatrix}
 i \\
 j
\end{bmatrix}
\]

Transformation
\[i' = i \]
\[j' = i + j \]

Substitutions: $i = i'$ and $j = j' - 1'$

for $i' = 0$ TO m
for $j' = i'$ to $i' + n$
\[X[j'-i'+1] = (X[j'-i'] + X[j'-i'+1] + X[j'-i'+2]) / 3 \]

Loop bounds (Using Fourier-Motzkin Elimination)
\[0 \leq i' \leq m \]
\[0 \leq j' - i' \leq n \]
Summary: Fully Permutable Loop Nests

• Definition: A loop nest is **fully permutable** if all the loops in the nest can be permuted arbitrarily without changing the semantics of the program.

• Affine time partitioning algorithm finds fully permutable loop nests.

• Given rank \(r \) time mappings:
 – There are \(r \) independent legal outermost loops
 – Dependences do not point backward along \(r \)-axes
 – Rank \(r \) matrix (comprising \(r \) independent basis vectors) transforms the original loop into \(r \)-deep outermost fully permutable nest

• Generate \((r-1)\) dimensional wavefront from permutable loop nest (\(r-1\) degrees of parallelism)
r-Dimensional Pipelineable Parallelism

- \(r \)-dimensions of legal time mapping:
 - \(r-1 \) degrees of parallelism
 - \(O(n^{r-1}) \) parallelism, \(n \) is the number of iterations in each loop
 - \(O(n) \) synchronization

- Synchronization
 - processor ID \((p_1, p_2, \ldots, p_{r-1})\):
 - \(r-1 \) outer loops map to each processor
 - Runs \(r \)-th loop sequentially on each processor
 - iteration \(i_r \) for processor \((p_1, p_2, \ldots, p_{r-1})\), waits for its \(r-1 \) neighbors
 - iteration \(i_r \) for processors \((p_1-1, p_2, \ldots, p_{r-1}), (p_1, p_2-1, \ldots, p_{r-1}), \ldots, (p_1, p_2, \ldots, p_{r-1}-1)\).
3. How to Compute Time Partitioning?

Compare:

Loops

Array

Processor ID

Time Stage

$F_1i_1 + f_1$

$F_2i_2 + f_2$

$C_1i_1 + c_1$

$C_2i_2 + c_2$

$i_1 \leq i_2$

Loops

Array
Comparing the Two Problems

Communication-Free Parallelism:
C: Space partitioning of Computation to Processor ID
For every pair of data dependent accesses \(F_1 i_1 + f_1 \) and \(F_2 i_2 + f_2 \)

Find \(C_1, c_1, C_2, c_2 \):
\[
\forall i_1, i_2 \quad F_1 i_1 + f_1 = F_2 i_2 + f_2 \rightarrow C_1 i_1 + c_1 = C_2 i_2 + c_2
\]
with the objective of maximizing the rank of \(C_1, C_2 \)

Pipelining Parallelism:
C: Time mapping of Computation to Time
For every pair of data dependent accesses \(F_1 i_1 + f_1 \) and \(F_2 i_2 + f_2 \)
Let \(B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0 \) be the corresponding loop bound constraints,

Find \(C_1, c_1, C_2, c_2 \):
\[
\forall i_1, i_2 \quad B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0
\]
\[
(i_1 \leq i_2) \land (F_1 i_1 + f_1 = F_2 i_2 + f_2) \rightarrow C_1 i_1 + c_1 \leq C_2 i_2 + c_2
\]
with the objective of maximizing the rank of \(C_1, C_2 \)

Much harder!
Farkas Lemma Comes to the Rescue!

Finding the possible time dimensions c:
Given matrix A, find a vector c such that
for all vectors x such that $Ax \geq 0$,
$c^T x \geq 0$

Farkas Lemma, 1901 (real domain)
The primal system of inequalities
$Ax \geq 0$, $c^T x < 0$
has a real-valued solution x
or, the dual system
$A^T y = c$, $y \geq 0$
has a real-valued solution y, but never both.

Time partitioning: Find c such that $A^T y = c$, $y \geq 0$ Much easier!

Note: Farkas Lemma: a theorem of the alternative
(no intuitive proof exists)
Two Key Algorithms

Loops

F_{1i_1+f_1} \quad F_{2i_2+f_2}

C_{1i_1+c_1} \quad C_{2i_2+c_2}

Array

Processor ID

i_1 \leq i_2

Loops

F_{2i_2+f_2} \quad F_{1i_1+f_1}

C_{1i_1+c_1} \quad C_{2i_2+c_2}

Array

Time Stage
Summary

Note: Time partitioning works for multiple loop nests & imperfect nesting
 – Examples in the next class

Affine partitioning: fundamental concepts in parallelism & pipelining
 – Can be solved using a mathematical algorithm (by a compiler)
 – Can also be applied intuitively to programs by hand
 • Parallelism:
 – Assign all dependent operations to the same processor
 – With as many dimensions as possible
 • Pipelining
 – Find the largest possible outermost permutable loop nests
 – Transform loops so dependences don’t point backwards in as many dimensions as possible.