Lecture 11
Pipelined Parallelism

1. Fully permutable loop nests & pipelining
2. Example: Transforming for full permutability
3. Time Affine Partitioning: Problem
4. Time Affine Partitioning Algorithm
5. O(1) Synchronization problem

Readings: Chapter 11.8-11.9

1. Maximum Parallelism & No Communication

C: Space partitioning of Computation to Processor ID
For every pair of data dependent accesses $F_{i_1}+f_1$ and $F_{i_2}+f_2$

Find C_1, C_2, C_3, C_4:

$\forall i_1, i_2: F_{i_1}+f_1 = F_{i_2}+f_2 \rightarrow C_{i_1}+c_1 = C_{i_2}+c_2$

with the objective of maximizing the rank of C_1, C_2
SOR (Successive Over-Relaxation): An Example

for i = 1 TO m
for j = 1 to n

Pipelineable Parallelism

for i = 1 TO m
for j = 1 to n

Processor ID: p
Synchronization variable: t[p] initialized to 0
for j = 1 to n
 if (p==1) or (t[p-1]>j)
 t[p]++;
A Fully Permutable Loop Nest: Example

\[
\begin{align*}
\text{for } i = 1 \text{ TO } m \\
\text{for } j = 1 \text{ to } n \\
\end{align*}
\]

\[
\begin{align*}
\text{for } j = 1 \text{ TO } n \\
\text{for } i = 1 \text{ to } m \\
\end{align*}
\]

A Fully Permutable Loop Nest: Definition

- A loop nest is fully permutable if all the loops can be permuted arbitrarily without changing the semantics of the program.
r-Dimensional Pipelineable Parallelism

- r-deep fully permutable loop nest; r > 1
 - r choices of outermost loops
 - r-1 degrees of parallelism
 - $O(r^{-1})$ parallelism
 - $O(n)$ synchronization

- **Code generation**
 - r-1 outer loops: processor ID ($p_1, p_2, ..., p_{r-1}$)
 - Sequential rth loop: i_r
 - iteration i_r for processor ($p_1, p_2, ..., p_{r-1}$), waits for iteration i_r for processors ($p_{r-1}, p_2, ..., p_1$),
 - ($p_1, p_2, ..., p_{r-1}$), ...
 - ($p_1, p_2, ..., p_{r-1}$).

Sequential Code

- A sequential loop nest

```
     i
```

- Degree of the outermost permutable loop nest?

- Intuition: Fully permutable loop nest:
 - Dependence does not point backwards along any axis
Pipelined Parallelism

1. Fully permutable loop nests & pipelining
2. Example: Transforming for full permutability
3. Time Affine Partitioning: Problem
4. Time Affine Partitioning Algorithm
5. O(1) Synchronization problem

2. Example

\[
\text{for } i = 0 \text{ TO } m \\
\text{for } j = 0 \text{ to } n \\
X[i+1] = (X[j]+X[j+1]+X[j+2])
\]
Transforming for Fully Permutable Loop Nests

for \(i = 0 \) TO \(m \)
for \(j = 0 \) to \(n \)
\(X[i+1] = (X[j] + X[j+1] + X[j+2]) \)

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\]

Transforming for Fully Permutable Loop Nests

for \(i = 0 \) TO \(m \)
for \(j = 0 \) to \(n \)
\(X[j+1] = (X[j] + X[j+1] + X[j+2]) / 3 \)

\[
\begin{bmatrix}
i' \\
j'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\]

Loop bounds:
\(i' = i \)
\(0 \leq i' \leq m \)
\(j' = i + j \)
\(0 \leq j' \leq n \)
\(j = j' - i' \)
Pipelined Parallelism

1. Fully permutable loop nests & pipelining
2. Example: Transforming for full permutability
3. Time Affine Partitioning: Problem
4. Time Affine Partitioning Algorithm
5. $O(1)$ Synchronization problem
3. Recall: Pipelineable Parallelism

- \(r \)-deep fully permutable loop nest; \(r > 1 \)
 - \(r \) choices of outermost loops
 - \(r-1 \) degrees of parallelism
 - \(O(r^{-1}) \) parallelism
 - \(O(n) \) synchronization

- **Goal:** Find transformation to maximize the degree of pipelining
- \(\rightarrow \) Find all the possible outermost loops

Finding the Maximum Degree of Pipelining

\[
\begin{align*}
C: & \text{ Time partitioning of Computation to Time} \\
\text{For every pair of data dependent accesses } F_{i_1}+f_1 \text{ and } F_{i_2}+f_2 \text{,} \\
\text{Let } B_{i_1}+b_1 \geq 0, B_{i_2}+b_2 \geq 0 \text{ be the corresponding loop bound constraints,} \\
\text{Find } C_{i_1}, c_{i_1}, C_{i_2}, c_2: \\
& \forall i_1, i_2 \quad B_{i_1} + b_1 \geq 0, \ B_{i_2} + b_2 \geq 0 \\
& (i_1 \leq i_2) \land (F_{i_1}+f_1 = F_{i_2}+f_2) \rightarrow C_{i_1}+c_1 \leq C_{i_2}+c_2 \\
\text{with the objective of maximizing the rank of } C_{i_1}, C_{i_2}
\end{align*}
\]
Pipelined Parallelism

1. Fully permutable loop nests & pipelining
2. Example: Transforming for full permutability
3. Time Affine Partitioning: Problem
4. Time Affine Partitioning Algorithm
5. O(1) Synchronization problem

4. Communication-Free vs Pipelining

Loops

Array

C1i1+C1
C2i2+C2
Processor ID

F1i1+f1
F2i2+f2

i1 ≤ i2
Loops

Array

F2i2+f2
F1i1+f1
C2i2+C2
C1i1+C1
Time Stage

M. Lam
CS243: Loop Transformations
Comparing the Two Problems

Communication-Free Parallelism:
C: Space partitioning of Computation to Processor ID
For every pair of data dependent accesses $F_{1i_1} + f_1$ and $F_{2i_2} + f_2$

Find $C_{1i_1}, c_{1i_1}, C_{2i_2}, c_{2i_2}$:

$\forall i_1, i_2 \quad F_{1i_1} + f_1 = F_{2i_2} + f_2 \rightarrow C_{1i_1} + c_{1i_1} = C_{2i_2} + c_{2i_2}$

with the objective of maximizing the rank of C_{1i_1}, C_{2i_2}

Pipelining Parallelism:
C: Time mapping of Computation to Time
For every pair of data dependent accesses $F_{1i_1} + f_1$ and $F_{2i_2} + f_2$

Let $B_{1i_1} + b_1 \geq 0, B_{2i_2} + b_2 \geq 0$ be the corresponding loop bound constraints,

Find $C_{1i_1}, c_{1i_1}, C_{2i_2}, c_{2i_2}$:

$\forall i_1, i_2 \quad B_{1i_1} + b_1 \geq 0, B_{2i_2} + b_2 \geq 0$

$(i_1 \leq i_2) \land (F_{1i_1} + f_1 = F_{2i_2} + f_2) \rightarrow C_{1i_1} + c_{1i_1} \leq C_{2i_2} + c_{2i_2}$

with the objective of maximizing the rank of C_{1i_1}, C_{2i_2}

Farkas Lemma

Finding the possible time dimensions c:

Given matrix A, find a vector c such that for all vectors x such that $Ax \geq 0$,

$c^T x \geq 0$

Farkas Lemma, 1901 (real domain)
The primal system of inequalities

$Ax \geq 0, \quad c^T x < 0$

has a real-valued solution x
or, the dual system

$A^T y = c, \quad y \geq 0$

has a real-valued solution y, but never both.

Time partitioning: Find c such that $A^T y = c, \quad y \geq 0$

Note: Farkas Lemma: a theorem of the alternative (no intuitive proof exists)
Cholesky Decomposition

for (i = 1; i <= N; i++) {
 for (j = 1; j <= i - 1; j++) {
 for (k = 1; k <= j - 1; k++) {
 X[i,j] = X[i,j] - X[i,k]*X[j,k];
 if (j==i && k<j) X[i,j] = X[i,j]/X[j,j];
 if (i==j && j<k) X[i,j] = sqrt(X[i,i]);
 }
 for (m=1; m<=i-1; m++) {
 X[i,i] = X[i,i] - X[i,m]*X[i,m];
 if (i==j && j<k) X[i,i] = sqrt(X[i,i]);
 }
 }
}

Transformed Space

Blocking with Matrix Multiplication

- Original program
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 for (k = 0; k < n; k++) {
 Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
 }
 }
 }

- Stripmine 2 outer loops
 for (ii = 0; ii < n; ii = ii+B) {
 for (i = ii; i < min(n,ii+B); i++) {
 for (j = 0; j < n; j++) {
 for (k = 0; k < n; k++) {
 Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
 }
 }
 }
 }

- Permute loops
 for (jj = 0; jj < n; jj = jj+B) {
 for (i = jj; i < min(n,jj+B); i++) {
 for (j = 0; j < n; j++) {
 for (k = 0; k < n; k++) {
 Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
 }
 }
 }
 }
Blocking

- Fully permutable loop nests can be blocked
 - Stripmine to create more fully permutable loops
 - Permutable loops can be moved inside (by definition)
- Uses
 - Increase data locality
 - Block size can be chosen so data accessed in the block fits in memory
 - Reduce synchronization overhead
 - By a factor of the block size
 - Consideration: startup latency, load balance for triangular loops

Pipelined Parallelism

1. Fully permutable loop nests & pipelining
2. Example: Transforming for full permutability
3. Time Affine Partitioning: Problem
4. Time Affine Partitioning Algorithm
5. O(1) Synchronization problem
5. Beyond Pipelined Parallelism

for (i=1; i<=n; i++) {
 X[i] = Y[i] + Z[i]; (s1)
 W[A[i]] = X[i]; (s2)
}

O(1) Synchronization

for (i=1; i<=n; i++) {
 X[i] = Y[i] + Z[i]; (s1)
 W[A[i]] = X[i]; (s2)
}

- Program dependence graph
 - Nodes: statements
 - Edges: data dependence

- Split the program into
 a sequence of strongly connected components
 separated by barriers
Algorithm

1. Find parallelism with minimum synchronization

 Find outermost communication-free parallelism
 Find outermost fully permutable loop nest
 If there are inner loops remaining
 Find program dependence graph
 Split the program into strongly connected components
 Repeat for each strongly connected component

2. Blocking can be applied based on machine characteristics

Summary: Two Key Algorithms
Example: Neural Network

// 2D 3x3 convolution (stride=1)
for i = 0 to channels-1
for y = 2 to Sy-1
for x = 2 to Sx-1
B[i,y,x] += A[i,y-2,x-2]*W1[0,0] + A[i,y-2,x-1]*W1[0,1] + ...
for i = 0 to channels-1
for y = 2 to Sy-1
for x = 2 to Sx-1
B[i,y,x] = max(B[i,y,x], 0)

// Dense neural network layer
for i = 0 to channels-1
for j = 0 to Sj-1
D[i,j] += C[i,j]*W3[i,j]

// Softmax:
for i = 0 to channels-1
for j = 0 to Sj-1
E[i] += exp(D[i,j])
for j = 0 to Sj-1
F[i,j] = D[i,j]/E[i]

Parallelization without Reduction Optimization

// 2D convolution (stride=1)
for i = 0 to channels-1
for y = 2 to Sy-1
for x = 2 to Sx-1
// Permutable loop nest
// 2D convolution
for i = 0 to channels-1
for y = 2 to (Sy-1)/2
for x = 2 to (Sx-1)/2
C[i,y,x] += B[i,y-2,x-2]*W2[0,0] + ...
// ReLU (Rectified Linear Unit)
for i = 0 to channels-1
for j = 0 to Sj-1
E[i] += exp(D[i,j])
for j = 0 to Sj-1
F[i,j] = D[i,j]/E[i]