Lecture 10
Parallelization

I. Basic Parallelization
II. Data dependence analysis
III. Interprocedural parallelization

Chapter 11.1-11.1.4
Why?

• Automatic parallelization is the holy grail
• Numerical applications, signal processing
 – A simpler but very useful domain
 – Has dense matrices
 – Lots of parallelism, ways to parallelize
 – But still hard to get good performance
• Understanding parallelization makes you a better programmer for parallel machines
• Beautiful abstraction: linear algebra, integer linear programming
Parallelization of Numerical Applications

- **DoAll loop parallelism**
 - Find loops whose iterations are independent
 - Number of iterations typically scales with the problem
 - Usually much larger than the number of processors in a machine
 - Divide up iterations across machines
Basic Parallelism

Examples:

FOR \(i = 1 \) to \(100 \)
\[A[i] = B[i] + C[i] \]

FOR \(i = 11 \) to \(20 \)
\[a[i] = a[i-1] + 3 \]

FOR \(i = 11 \) to \(20 \)
\[a[i] = a[i-10] + 3 \]

• Does there exist a data dependence edge between two different iterations?
• A data dependence edge is loop-carried if it crosses iteration boundaries
• DoAll loops: loops without loop-carried dependences
Recall: Data Dependences

- **True dependence:**

 \[
 \begin{align*}
 a &= a \\
 &= a \\
 \end{align*}
 \]

- **Anti-dependence:**

 \[
 \begin{align*}
 &= a \\
 a &= \\
 \end{align*}
 \]

- **Output dependence**

 \[
 \begin{align*}
 a &= \\
 a &= \\
 \end{align*}
 \]
Affine Array Accesses

• Common patterns of data accesses: (i, j, k are loop indexes)
 \[A[i,j], A[i-1, j+1] \]

• Array indexes are affine expressions of surrounding loop indexes
 – Loop indexes: \(i_n, i_{n-1}, \ldots, i_1 \)
 – Integer constants: \(c_n, c_{n-1}, \ldots, c_0 \)
 – Array index: \(c_n i_n + c_{n-1} i_{n-1} + \ldots + c_1 i_1 + c_0 \)
 – Affine expression: linear expression + a constant term \((c_0) \)
II. Formulating Data Dependence Analysis

FOR i := 2 to 5 do

• Between read access $A[i]$ and write access $A[i-2]$ there is a dependence if:
 – there exist two iterations i_r and i_w within the loop bounds, s.t.
 – iterations i_r & i_w read & write the same array element, respectively
 \[\exists \text{integers } i_w, i_r \mid 2 \leq i_w, i_r \leq 5 \quad i_r = i_w - 2 \]

• Between write access $A[i-2]$ and write access $A[i-2]$ there is a dependence if:
 \[\exists \text{integers } i_w, i_v \mid 2 \leq i_w, i_v \leq 5 \quad i_w - 2 = i_v - 2 \]
 – To rule out the case when the same instance depends on itself:
 • add constraint $i_w \neq i_v$
Memory Disambiguation is Undecidable at Compile Time

read(n)
For i =
 a[i] = a[n]
Domain of Data Dependence Analysis

- Only use loop bounds and array indexes that are affine functions of loop variables

 for i = 1 to n
 for j = 2i to 100

 a[i+2j+3][4i+2j][i*i] = …

 … = a[1][2i+1][j]

- Assume a data dependence between the read & write operation if:
 - Let a read instance be denoted with indexes \(i_r, j_r\) and
 - a write instance be denoted with indexes \(i_w, j_w\)

\[\exists \text{Integers } i_r, j_r, i_w, j_w, n \]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w \\
n
\end{bmatrix}
+
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix}
\preceq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r \\
n
\end{bmatrix}
+
\begin{bmatrix}
-1 \\
0 \\
0 \\
100
\end{bmatrix}
\preceq
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 2
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w
\end{bmatrix}
+
\begin{bmatrix}
3 \\
0
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 \\
2 & 0
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r
\end{bmatrix}
+
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\]
Domain of Data Dependence Analysis

- Equate each dimension of array access; ignore non-affine ones
 - No solution \rightarrow No data dependence
 - Solution \rightarrow there may be a dependence
Complexity of Data Dependence Analysis

For every pair of accesses not necessarily distinct \((F_1, f_1)\) and \((F_2, f_2)\) one must be a write operation.

Let \(B_1i_1 + b_1 \geq 0, B_2i_2 + b_2 \geq 0\) be the corresponding loop bound constraints,

\[\exists \text{ integers } i_1, i_2 \quad B_1i_1 + b_1 \geq 0, B_2i_2 + b_2 \geq 0 \]

\[F_1i_1 + f_1 = F_2i_2 + f_2 \]

If the accesses are not distinct, then add the constraint \(i_1 \neq i_2\)

• Equivalent to integer linear programming

\[\exists \text{ integer } i \quad A_1i \leq b_1 \quad A_2i = b_2 \]

• Integer linear programming is \text{NP}-complete

 \(-\ O(\text{size of the coefficients}) \) or \(O(n^n)\)
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • If there is no solution, then there is no integer solution
Fourier-Motzkin Elimination

• To eliminate a variable from a set of linear inequalities.
• To eliminate a variable x_1
 – Rewrite all expressions in terms of lower or upper bounds of x_1
 – Create a transitive constraint for each pair of lower and upper bounds.
• Example: Let L, U be lower bounds and upper bounds resp
 – To eliminate x_1:

\[
\begin{align*}
L_1(x_2, \ldots, x_n) & \leq x_1 \leq U_1(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq x_1 \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]

\[
\begin{align*}
L_1(x_2, \ldots, x_n) & \leq U_1(x_2, \ldots, x_n) \\
L_1(x_2, \ldots, x_n) & \leq U_2(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq U_1(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]
Example

FOR $i = 1$ to 5
 FOR $j = i+1$ to 5
 $A[i,j] = f(A[i,i], A[i-1,j])$

write

1 ≤ i
i ≤ 5

1 ≤ j
j ≤ 5

read

1 ≤ i'
i' ≤ 5

1 ≤ j'
j' ≤ 5

1: Data dep between $A[i,j]$, $A[i',i']$

$i = i'$

$j = i'$

$i'+1$ ≤ i'

2: Data dep between $A[i,j]$ and $A[i'-1,j']$

$i = i' - 1$ => $i+1 = i'$

$j = j'$

Substituting

1 ≤ $i + 1$
$i + 1$ ≤ 5

1 ≤ $i + 2$
j ≤ 5

Combining

1 ≤ i; i ≤ 4

Eliminating i:

1 ≤ 4; 1 ≤ j -2; j ≤ 5

3 ≤ j; j ≤ 5

Eliminating j:

3 ≤ 5
Data Dependence Analysis Algorithm

• Typically solving many tiny, repeated problems
 – Integer linear programming packages optimize for large problems
 – Use memoization to remember the results of simple tests

• Apply a series of relatively simple tests
 – GCD: 2*i, 2*i+1; GCD for simultaneous equations
 – Test if the ranges overlap

• Backed up by a more expensive algorithm
 – Use Fourier-Motzkin Elimination to test if there is a real solution
 • Keep eliminating variables to see if a solution remains
 • Add heuristics to encourage finding an integer solution.
 – Create 2 subproblems if a real, but not integer, solution is found.
 • For example, if x = .5 is a solution, create two problems,
 by adding x ≤ 0 and x ≥ 1 respectively to original constraint.
Relaxing Dependences

Privatization:

- **Scalar**

 for i = 1 to n

 t = (A[i] + B[i]) / 2;

 C[i] = t * t;

- **Array**

 for i = 1 to n
 for j = 1 to n
 t[j] = (A[i,j] + B[i,j]) / 2;
 for j = 1 to n
 C[i,j] = t[j] * t[j];

Reduction:

for i = 1 to n

sum = sum + A[i];
Interprocedural Parallelization

- Why? Amdahl’s Law

- Interprocedural symbolic analysis
 - Find interprocedural array indexes which are affine expressions of outer loop indices

- Interprocedural parallelization analysis
 - Data dependence based on summaries of array regions accessed
 - If the regions do not intersect, there is no parallelism
 - Find privatizable scalar variables and arrays
 - Find scalar and array reductions
Conclusions

• Basic parallelization
 – Doall loop: loops with no loop-carried data dependences
 – Data dependence for affine loop indexes = integer linear programming

• Coarse-grain parallelism because of Amdahl’s Law
 – Interprocedural analysis is useful for affine indices
 – Ask users for help on unresolved dependences
1. Blocking Example: Matrix Multiplication

\[
\begin{bmatrix}
1000 \\
32
\end{bmatrix}
\begin{bmatrix}
1000 \\
32
\end{bmatrix}
=
\begin{bmatrix}
1000 \\
32
\end{bmatrix}
\begin{bmatrix}
1000 \\
32
\end{bmatrix}
\]

Data Accessed

<table>
<thead>
<tr>
<th>Block Size</th>
<th>Data Accessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1002000</td>
</tr>
<tr>
<td>32</td>
<td>65024</td>
</tr>
</tbody>
</table>
Experimental Results

- With Blocking
- Without Blocking
Code Transform

• Before
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 for (k = 0; k < n; k++) {
 Z[i,j] = Z[i,j] + X[i,k]*Y[k,j];
 }
 }
 }

• After
 for (ii = 0; ii < n; ii = ii+B) {
 for (jj = 0; jj < n; jj = jj+B) {
 for (kk = 0; kk < n; kk = kk+B) {
 for (i = ii; i < min(n,kk+B); i++) {
 for (j = jj; j < min(n,kk+B); j++) {
 for (k = kk; k < min(n,kk+B); k++) {
 Z[i,j] = Z[i,j] + X[i,k] * Y[k,j];
 }
 }
 }
 }
 }
 }