Lecture 10
Parallelization

I. Basic Parallelization
II. Data dependence analysis
III. Interprocedural parallelization

Chapter 11.1-11.1.4

Why?

- Automatic parallelization is the holy grail
- Numerical applications, signal processing
 - A simpler but very useful domain
 - Has dense matrices
 - Lots of parallelism, ways to parallelize
 - But still hard to get good performance
- Understanding parallelization makes you a better programmer for parallel machines
- Beautiful abstraction: linear algebra, integer linear programming
Parallelization of Numerical Applications

- **DoAll loop parallelism**
 - Find loops whose iterations are independent
 - Number of iterations typically scales with the problem
 - Usually much larger than the number of processors in a machine
 - Divide up iterations across machines

Basic Parallelism

Examples:

```plaintext
FOR i = 1 to 100
    A[i] = B[i] + C[i]

FOR i = 11 TO 20
    a[i] = a[i-1] + 3

FOR i = 11 TO 20
    a[i] = a[i-10] + 3
```

- Does there exist a data dependence edge between two different iterations?
- A data dependence edge is *loop-carried* if it crosses iteration boundaries
- DoAll loops: loops without loop-carried dependences
Recall: Data Dependences

- True dependence:
 \[a = a \]

- Anti-dependence:
 \[a = a \]

- Output dependence
 \[a = a \]

Affine Array Accesses

- Common patterns of data accesses: (i, j, k are loop indexes)
 \[A[i,j], A[i-1, j+1] \]

- Array indexes are affine expressions of surrounding loop indexes
 - Loop indexes: \(i_n, i_{n-1}, \ldots, i_1 \)
 - Integer constants: \(c_n, c_{n-1}, \ldots, c_0 \)
 - Array index: \(c_n i_n + c_{n-1} i_{n-1} + \ldots + c_1 i_1 + c_0 \)
 - Affine expression: linear expression + a constant term \((c_0) \)
II. Formulating Data Dependence Analysis

\[
\text{FOR } i := 2 \text{ to } 5 \text{ do} \\
\text{A}[i-2] = A[i]+1;
\]

• Between read access \(A[i]\) and write access \(A[i-2]\) there is a dependence if:
 – there exist two iterations \(i_r\) and \(i_w\) within the loop bounds, s.t.
 – iterations \(i_r\) & \(i_w\) read & write the same array element, respectively
 \[\exists \text{integers } i_w, i_r : 2 \leq i_w, i_r \leq 5 \quad i_r = i_w - 2\]

• Between write access \(A[i-2]\) and write access \(A[i-2]\) there is a dependence if:
 \[\exists \text{integers } i_w, i_v : 2 \leq i_w, i_v \leq 5 \quad i_w - 2 = i_v - 2\]
 – To rule out the case when the same instance depends on itself:
 • add constraint \(i_w \neq i_v\)

Memory Disambiguation

is

Undecidable at Compile Time

read(n)
For i =
\[a[i] = a[n]\]
Domain of Data Dependence Analysis

- Only use loop bounds and array indexes that are affine functions of loop variables

 \[
 \text{for } i = 1 \text{ to } n \\
 \text{for } j = 2i \text{ to } 100 \\
 a[i+2j+3][4i+2j][i+1] = \ldots \\
 \ldots = a[1][2i+1][j]
 \]

- Assume a data dependence between the read & write operation if:
 - Let a read instance be denoted with indexes \(i_r, j_r \)
 - A write instance be denoted with indexes \(i_w, j_w \)

\[\exists \text{Integers } i_r, j_r, i_w, j_w, n\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_r \\
j_r \\
100
\end{bmatrix}
=
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
-2 & 1 & 0 \\
0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
i_w \\
j_w \\
100
\end{bmatrix}
\]

Equate each dimension of array access; ignore non-affine ones

- No solution \(\rightarrow \) No data dependence
- Solution \(\rightarrow \) there may be a dependence
Complexity of Data Dependence Analysis

For every pair of accesses not necessarily distinct \((F_1, f_1)\) and \((F_2, f_2)\) one must be a write operation

Let \(B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0\) be the corresponding loop bound constraints,

\[\exists \text{ integers } i_1, i_2 \quad B_1 i_1 + b_1 \geq 0, B_2 i_2 + b_2 \geq 0 \]

\[F_1 i_1 + f_1 = F_2 i_2 + f_2 \]

If the accesses are not distinct, then add the constraint \(i_1 \neq i_2\)

- Equivalent to integer linear programming

\[\exists \text{ integer } i \quad A_1 i \geq b_1, A_2 i \geq b_2 \]

- Integer linear programming is \(\text{NP-complete}\)
 - \(O(\text{size of the coefficients})\) or \(O(n^2)\)

Data Dependence Analysis Algorithm

- Typically solving many tiny, repeated problems
 - Integer linear programming packages optimize for large problems
 - Use memoization to remember the results of simple tests

- Apply a series of relatively simple tests
 - GCD: \(2^i, 2^{i+1}\); GCD for simultaneous equations
 - Test if the ranges overlap

- Backed up by a more expensive algorithm
 - Use Fourier-Motzkin Elimination to test if there is a real solution
 - Keep eliminating variables to see if a solution remains
 - If there is no solution, then there is no integer solution
Fourier-Motzkin Elimination

- To eliminate a variable from a set of linear inequalities.
- To eliminate a variable x_i:
 - Rewrite all expressions in terms of lower or upper bounds of x_i
 - Create a transitive constraint for each pair of lower and upper bounds.
- Example: Let L, U be lower bounds and upper bounds resp
 - To eliminate x_i:

\[
\begin{align*}
L_1(x_2, \ldots, x_n) & \leq x_1 \leq U_1(x_2, \ldots, x_n) \\
L_2(x_2, \ldots, x_n) & \leq x_1 \leq U_2(x_2, \ldots, x_n)
\end{align*}
\]

Example

FOR $i = 1$ to 5
FOR $j = i+1$ to 5
$A[i,j] = f(A[i,i], A[i-1,j])$

write
\[
\begin{align*}
1 \leq i & \quad i \neq i' \\
i + 1 \leq j & \quad i' + 1 \leq j'
\end{align*}
\]

read
\[
\begin{align*}
1 \leq i' & \\
i' \neq 5 & \quad j \neq 5
\end{align*}
\]

1: Data dep between $A[i,j], A[i',j']$
\[
\begin{align*}
i = i' \\
j = j' \\
i' + 1 \neq i'
\end{align*}
\]

2: Data dep between $A[i,j]$ and $A[i'-1,j']$
\[
\begin{align*}
i = i' - 1 & \Rightarrow i+1 = i' \\
j = j' \\
i = i+1, & \quad i+1 \neq 5 \\
+ 2 \neq j & \quad j \neq 5
\end{align*}
\]

Substituting
\[
\begin{align*}
1 \leq i+1, & \quad i+1 \neq 5 \\
i \neq 4 & \quad j \neq 5
\end{align*}
\]

Combining
\[
\begin{align*}
1 \leq i; & \quad i \neq 4 \\
i \leq j - 2; & \quad j \neq 5 \\
3 \leq j; & \quad j \leq 5
\end{align*}
\]

Eliminating i:
\[
\begin{align*}
1 \leq 4, 1 \leq j - 2; & \quad j \leq 5 \\
3 \leq j; & \quad j \leq 5
\end{align*}
\]

Eliminating j:
\[
\begin{align*}
3 \leq 5
\end{align*}
\]
Data Dependence Analysis Algorithm

- Typically solving many tiny, repeated problems
 - Integer linear programming packages optimize for large problems
 - Use memoization to remember the results of simple tests

- Apply a series of relatively simple tests
 - GCD: 2*i, 2*i+1; GCD for simultaneous equations
 - Test if the ranges overlap

- Backed up by a more expensive algorithm
 - Use Fourier-Motzkin Elimination to test if there is a real solution
 - Keep eliminating variables to see if a solution remains
 - Add heuristics to encourage finding an integer solution.
 - Create 2 subproblems if a real, but not integer, solution is found.
 - For example, if \(x = .5 \) is a solution, create two problems,
 by adding \(x \leq 0 \) and \(x \geq 1 \) respectively to original constraint.

Relaxing Dependences

Privatization:
- Scalar

 for \(i = 1 \) to \(n \)

 \[
 t = (A[i] + B[i]) / 2;
 C[i] = t \times t;
 \]

- Array

 for \(i = 1 \) to \(n \)

 for \(j = 1 \) to \(n \)

 \[
 t[j] = (A[i,j] + B[i,j]) / 2;
 \]

 for \(j = 1 \) to \(n \)

 \[
 C[i,j] = t[j] \times t[j];
 \]

Reduction:

 for \(i = 1 \) to \(n \)

 \[
 sum = sum + A[i];
 \]
Interprocedural Parallelization

- Why? Amdahl’s Law
- Interprocedural symbolic analysis
 - Find interprocedural array indexes
 which are affine expressions of outer loop indices
- Interprocedural parallelization analysis
 - Data dependence based on summaries of array regions accessed
 - If the regions do not intersect, there is no parallelism
 - Find privatizable scalar variables and arrays
 - Find scalar and array reductions
Conclusions

• Basic parallelization
 – Doall loop: loops with no loop-carried data dependences
 – Data dependence for affine loop indexes = integer linear programming

• Coarse-grain parallelism because of Amdahl’s Law
 – Interprocedural analysis is useful for affine indices
 – Ask users for help on unresolved dependences

1. Blocking Example: Matrix Multiplication

\[
\begin{array}{c}
1000 \\
1000 \\
1000 \\
\end{array}
\times
\begin{array}{c}
\begin{array}{c}
1000 \\
32 \\
32 \\
\end{array}
\end{array}
\]

\text{Data Accessed}

\begin{array}{c}
1002000 \\
65024 \\
\end{array}
Experimental Results

- With Blocking
- Without Blocking

Code Transform

- Before
  ```
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      for (k = 0; k < n; k++) {
        Z[i,j] = Z[i,j] + X[i,k] * Y[k,j];
      }
    }
  }
  ```

- After
  ```
  for (ii = 0; ii < n; ii = ii+B) {
    for (jj = 0; jj < n; jj = jj+B) {
      for (kk = 0; kk < n; kk = kk+B) {
        for (i = ii; i < min(n,kk+B); i++) {
          for (j = jj; j < min(n,kk+B); j++) {
            for (k = kk; k < min(n,kk+B); k++) {
              Z[i,j] = Z[i,j] + X[i,k] * Y[k,j];
            }
          }
        }
      }
    }
  }
  ```