1 Pointer Analysis

Consider the following program:

class A {
 public A f(A c) {
 if (c != null) {
 c = new A(); // h1
 }
 return c;
 }
 public static void main(String[] args) {
 A a = new A(); // h2
 A b = new A(); // h3
 a = f(a);
 b = f(b);
 }
}

1. Perform context-sensitive, flow-insensitive analysis. What are pts tuples inferred from the code?

 With a context-sensitive analysis, the two calls to f will have their own contexts; call the parameter to the first call to f, c1 and the parameter to the second call to f, c2. Call the allocation in f (now separate), h1a and h1b.

 pts(a, h2)
 pts(b, h3)
 pts(c1, h2)
 pts(c1, h1a)
 pts(a, h1a)
 pts(c2, h3)
 pts(c2, h1b)
2. Now perform context-insensitive, flow-insensitive analysis. What are the pts tuples inferred from the code?

Now the calls to f are not separate.

pts(a, h2)
pts(b, h3)
pts(c, h2)
pts(c, h1)
pts(a, h1)
pts(c, h3)
pts(b, h1)

These below are an artifact of the context-insensitivity (the above is very similar to the context-sensitive analysis, but the fact that the c’s are not separate means that the parameters across the calls alias each other [even though at runtime they do not]).

pts(b, h2)
pts(a, h3)

3. What are the true set of pts tuples inferred from the code (for a and b)?

pts(a, h2)
pts(b, h3)
pts(a, h1a)
pts(b, h1b)
2 BDD Variable Ordering

1. Consider the following boolean expression: $(b1 \land b2) \lor (b3 \land b4)$. What is the worst-case ordering (in terms of number of nodes needed)? Show the BDD for this ordering.

$b1 \geq b3 \geq b2 \geq b4$.

![BDD Diagram]

2. What is the optimal variable ordering (in terms of number of nodes used)? Show the BDD for this ordering as well.

$b1 \geq b2 \geq b3 \geq b4$.
3. Now let’s generalize; consider the boolean expression $(b_1 \land b_2) \lor (b_3 \land b_4) \lor \cdots \lor (b_{2n-1} \land b_{2n})$. What do you think the optimal ordering will be and how many nodes will it take (in terms of n)? What about for the worst-case ordering? (No need for a proof, just your rough intuition should suffice).

It turns out that the variable ordering and relationship between the number of nodes and n generalizes beyond the specific case we’ve worked through here.

The optimal ordering will be $b_1 \geq b_2 \geq \cdots \geq b_{2n-1} \geq b_{2n}$. If we look above, we can see that for $n = 2$, we had 6 nodes, or $2n + 2$ nodes (one node for each variable and 2 for the sink nodes).

The pessimal ordering (at least one of them) will be $b_1 \geq b_3 \geq \cdots \geq b_{2n-1} \geq b_2 \geq b_4 \geq \cdots \geq b_{2n}$. This is a little harder to see (and even harder to prove), but you will require an exponential number of nodes; 2^{n+1} to be specific (we can see this for the $n = 2$ case since above, we see we required $2^3 = 8$ nodes).