Note: these solutions are slightly more detailed than we would expect you to hand in so that you can learn from any questions you missed.

Problems 1: Lock Analysis – 10 points
A correct single analysis got full points. We accepted solutions different from the one below, but points were deducted for solutions with a separate analysis for each warning, if warnings were generated incorrectly, if there were errors in the specified analysis or for incorrect reasoning.

1. Analysis is as follows:
 - Lattice elements: set of all variables, each in one of unknown, locked, unlocked or either state (product lattice)
 - Meet is a point-wise meet for each variable (as described by the lattice).
 - Direction: forward
 - Initialization: OUT[B] = unknown for all variables
 - Boundary condition: OUT[Entry] = unlocked for all variables
 - Transfer function f:
 - Lock(v): v becomes locked (constant), all others unchanged (identity),
 - Unlock(v): v becomes unlocked (constant), all others unchanged (identity)

2. It will converge, since it is a monotone framework, with a product lattice with finite descending chains.
3. It is monotone, since the transfer function defined above gives identity or constant, each of which is monotone.
4. It is distributive, since $f(v_1 \land v_2) = f(v_1) \land f(v_2)$, for the transfer function f defined above.
5. Warnings are issued as follows:
 - Warning I: if IN[Lock(v)] has v in locked or either state
 - Warning II: if IN(Exit) has any v in locked or either state
 - Warning III: if IN[Unlock(v)] has v in unlocked or either

Note, in the above lattice, top element, unknown is required for correct initialization. Initializing OUT[B] to unlocked incorrectly generates a warning for the example shown in the figure.
Problem 2: Dominators and Natural Loops – 6 points

1. The dominator tree for the graph is given below.

```
    A
   / \    
  B   I   L  K  N  M  O
   \   \    /     /    
    C   D   E
     /   /  / 
    F   G  H
```

2. The back edges and their natural loops are given below:
 - J → K with natural loop {J, K}
 - D → B with natural loop {B, C, D}
 - H → E with natural loop {E, F, G, H}
 - F → E with natural loop {E, F}
 - H → B with natural loop {B, C, E, F, G, H}
Problem 3: Static Single Assignment Form (SSA) – 10 points

The transformed graph is given below. The phi nodes x_1, x_5, y_8, x_6, and z_4 are all redundant (and circled below).

Problem 4: Partial Redundancy Elimination – 10 points

Points were deducted for not placing expressions correctly and for not cleaning up temporaries. The left figure shows points where the expression $x + y$ is anticipated, earliest and postponable. The right figure places $x + y$ at the points where the expression must be computed latest.
Problem 5: Register Allocation – 10 points
In the control flow graph below, we have labeled each definition and use of a variable with a subscript indicating which live range it corresponds to. Note, the live range assignments given are after we have merged overlapping live ranges.

We now draw the interference graph and the assignment of registers to live ranges.