Problem 1. Pointer Analysis (15 points)

1. hP tuples for context insensitive analysis:
 \hspace{1cm} hP(h1, a, h2) \\
 \hspace{1cm} hP(h1, a, h3) \\
 \hspace{1cm} hP(h2, a, h2) \\
 \hspace{1cm} hP(h2, a, h3) \\
 \hspace{1cm} hP(h3, a, h1) \\
 \hspace{1cm} hP(h2, b, h1) \\
 \hspace{1cm} hP(h3, b, h1) \\
 \hspace{1cm} hP(h3, b, h2) \\
 \hspace{1cm} hP(h3, b, h2)

 From the declarations of \(x, y, z\), you have \(vP(x, h1), vP(y, h2)\) and \(vP(z, h3)\). For context insensitive analysis, for \(\text{bar}\), you have, \(\text{assign}(p, x), \text{assign}(q, y), \text{assign}(p, y)\) and \(\text{assign}(q, z)\) relations, that is, \(p\) could be \(x\) or \(y\) and \(q\) could be \(y\) or \(z\). A similar context insensitive analysis for \(\text{baz}\) and \(\text{qux}\) gives you more relations, with the result that \(x, p, c, m\) could point to \(h1\) or \(h2\), and \(y, q, d, n\) could point to \(h2\) or \(h3\) (more \(vP\) tuples). Finally, taking a join with relations \(\text{store}(z, a, x)\), inferred from \(\text{main}\), \(\text{store}(c, a, d)\), inferred from \(\text{baz}\), and \(\text{store}(n, b, m)\), inferred from \(\text{qux}\), you can derive the complete set of \(hP\) relations above.

 A common mistake was that results for context sensitive analysis were provided here. Note that for context insensitive analysis, for \(\text{bar}\), \(p\) could be \(x\) or \(y\) and \(q\) could be \(y\) or \(z\). You do not have any context information, and so this results in more relations than context sensitive analysis.

2. Call-graphs, context insensitive one on the left, and context sensitive one on the right:

3. Copies of procedures
 \hspace{1cm} \text{bar: 2} \hspace{1cm} \text{baz: 4} \hspace{1cm} \text{qux: 4}

4. hP tuples for context sensitive analysis:
 \hspace{1cm} hP(h1, a, h2) \\
 \hspace{1cm} hP(h2, a, h3) \\
 \hspace{1cm} hP(h3, a, h1) \\
 \hspace{1cm} hP(h2, b, h1) \\
 \hspace{1cm} hP(h3, b, h2)

Here, you run the analysis separately for each clone. For the first bar, p can be x only, pointing to h1, and q can be y only, pointing to h2. Further running the analysis, c and m can point to h1 and d and n can point to h2. This gives the 2 relations hP(h1, a, h2) and hP(h2, b, h1). The relations hP(h2, a, h3) and hP(h3, b, h2) can be derived similarly for the second bar. hP(h3, a, h1) is from the main program.
Problem 2. SMT (15 points)

View online at: http://rise4fun.com/Z3/iov5?menu=0

; SSA Form:
; phi1 = 0 <= x && x < N
; phi2 = x <= N/2
; x1 = x + 1
; x2 = phi2 ? x1 : x
; v = data[x2]
; phi3 = 0 <= v && v < N
; z1 = data[v]
; z2 = 0
; z3 = phi3 ? z1 : z2
; data[z3]

; Declare arguments
(declare-fun x () (_ BitVec 32))
(declare-fun data () (Array (_ BitVec 32) (_ BitVec 32)))
(declare-fun N () (_ BitVec 32))

; Declare the rest of the SSA variables
(declare-fun x1 () (_ BitVec 32))
(declare-fun x2 () (_ BitVec 32))
(declare-fun v () (_ BitVec 32))
(declare-fun z1 () (_ BitVec 32))
(declare-fun z2 () (_ BitVec 32))
(declare-fun z3 () (_ BitVec 32)) ; meta

; Declare the path variables
(declare-fun phi1 () Bool)
(declare-fun phi2 () Bool)
(declare-fun phi3 () Bool)

; For convenience
(declare-fun zero () (_ BitVec 32))
(declare-fun one () (_ BitVec 32))
(assert (= zero #x00000000))
(assert (= one #x00000001))

; Main translation of the program into SMT. Here we are
; only concerned with the dataflow, not control flow
(assert (= phi1 (and (bvsle zero x) (bvslt x N))))
(assert (= phi2 (bvsle x (bvashr N one))))
(assert (= x1 (bvadd x one)))
(assert (= x2 (ite phi2 x1 x)))
(assert (= v (select data x2)))
(assert (= phi3 (and (bvsle zero v) (bvslt v N))))
(assert (= z1 (select data v)))
(assert (= z2 zero))
(assert (= z3 (ite phi3 z1 z2)))

; Check for the first access on line 7
(push)
(assert phi1) ; We need to take the first branch
(assert (not (and (bvsle zero x2) (bvslt x2 N))))
(check-sat)
(get-model)
; The model tells us that x = 0, N = 1, data = {2,0}. This is
; a real bug because x2 will be 1, which is not less than N.
; Note that the rest of the model parameters aren’t relevant.
(pop)

; Check for the second access on line 9
(push)
(assert phi1)
(assert phi3)
(assert (not (and (bvsle zero v) (bvslt v N))))
(check-sat)
; Unsat, which means this can’t crash. This is pretty obvious
; because the access is protected by a check.
(pop)

; Check for the third access on line 13
(push)
(assert phi1)
(assert (not (and (bvsle zero z3) (bvslt z3 N))))
(check-sat)
(get-model)
; The interpretation of this model is more complex. Because this
; access is after the line 7 access, it is possible this code is
; never executed when the program has already crashed at line 7.
; That is what this model says: we have the same x=0, N=1 problem
; as before. This model causes a crash, just not a crash at the point
; in the program we were expecting. The translation is sound in the
; sense that any found errors will crash the program, but these errors
; may not be located correctly. Like many of the analyzes we have
; seen this quarter, this imprecision can be good or bad depending on
; the intended application. See below for how to fix this.
(pop)

; Extra (We did not expect you to do this on the homework)
; Check for the third access on line 13 correctly
(push)
(assert phi)
; Additionally require the access at line 7 to be in bounds.
; We don't need to check line 9 because it is always valid.
(assert (and (bvsle zero x2) (bvslt x2 N)))
(assert (not (and (bvsle zero z3) (bvslt z3 N))))
(check-sat)
(get-model)
; The model now is x = 0, N = 129, data = {0x80002, 0, 0x80002, 0x80002...}
; The program sets v = data[1], thus setting z3 = 0x80002 which is obviously
; out of bounds of N = 129
(pop)