Lecture 2

Introduction to Data Flow Analysis

I Example: Reaching definition analysis

II Example: Liveness Analysis

III A General Framework
 (Theory in next lecture)

Reading: Chapter 9.2
Data Flow Analysis

• **Data flow analysis:**
 - properties of data taken into consideration the control flow in a function (also known as flow-sensitive analysis)
 - intraprocedural analysis

• **Examples of optimizations:**
 - Constant propagation
 - Common subexpression elimination
 - Dead code elimination

Value of x?
Which “definition” defines x?
Is the definition still meaningful (live)?
I. Static program vs. dynamic execution

- **Statically**: Finite program
- **Dynamically**: Can have infinitely many possible execution paths
- **Data flow analysis abstraction**:
 - For each `static` point in the program:

 combines information of all the `dynamic` instances of the same program point.

- **Example of a data flow question**:
 - Which definition defines the value used in statement “b = a”?

```plaintext
B1
   a = 10

B2
   if input()
      exit

B3
   b = a
   a = 11
```
Reaching Definitions

- Every assignment is a definition
- A definition d reaches a point p if there exists a path from the point immediately following d to p such that d is not killed (overwritten) along that path.

Problem statement

- For each point in the program, determine if each definition in the program reaches the point
- A bit vector per program point, vector-length = #defs
Data Flow Analysis Schema

- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 Transfer function f_b relates in[b] and out[b], for same b
 - Effect of flow of control:
 relates out[b_1], in[b_2] if b_1 and b_2 are adjacent
- Find a solution to the equations
Effects of a Basic Block

- A statement s (d: x = y + z)

 \(\text{out}[s] = f_s(\text{in}[s]) = \text{Gen}[s] \cup (\text{in}[s]-\text{Kill}[s]) \)

 - **Gen[s]:** definitions generated: \(\text{Gen}[s] = \{d\} \)

 - **in[s]-Kill[s]:** propagated definitions: \(\text{in}[s] - \text{Kill}[s] \), where \(\text{Kill}[s] = \text{set of all other defs to x in rest of program} \)

- \(\text{out}[B] = f_d_2 f_d_1 f_d_0(\text{in}[B]) \)

 \[
 \text{out}[B] = \text{Gen}[d_2] \cup (\text{Gen}[d_1] \cup (\text{Gen}[d_0] \cup (\text{in}[B]-\text{Kill}[d_0]))) \cup \text{Kill}[d_1]) - \text{Kill}[d_2] \\
 = \text{Gen}[d_2] \cup (\text{Gen}[d_1] \cup (\text{Gen}[d_0] - \text{Kill}[d_1]) - \text{Kill}[d_2]) \cup \text{in}[B] - (\text{Kill}[d_0] \cup \text{Kill}[d_1] \cup \text{Kill}[d_2]) \\
 = \text{Gen}[B] \cup (\text{in}[B] - \text{Kill}[B])
 \]

- **Gen[B]:** locally exposed definitions (available at end of bb)
- **Kill[B]:** set of definitions killed by B
Effects of the Edges (acyclic)

- **Join node**: a node with multiple predecessors
- **meet operator** \((\wedge)\):
 \[
 \text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup \ldots \cup \text{out}[p_n],
 \]
 where
 \(p_1, \ldots, p_n\) are predecessors of \(b\)
Cyclic Graphs

- Equations still hold
 - \(\text{out}[b] = f_b(\text{in}[b]) \)
 - \(\text{in}[b] = \text{out}[p_1] \cup \text{out}[p_2] \cup ... \cup \text{out}[p_n], p_1, ..., p_n \text{ pred.} \)
- Find: fixed point solution
Reaching Definitions: Iterative Algorithm

input: control flow graph $\text{CFG} = (N, E, \text{Entry}, \text{Exit})$

// Boundary condition
$\text{OUT}[\text{Entry}] = \emptyset$

// Initialization for iterative algorithm
For each basic block B other than Entry
$\text{OUT}[B] = \emptyset$

// iterate
While (changes to any OUT occur) {
 For each basic block B other than Entry {
 $\text{in}[B] = \cup (\text{out}[p])$, for all predecessors p of B
 $\text{out}[B] = f_B(\text{in}[B])$ // $\text{out}[B]=\text{gen}[B]\cup(\text{in}[B]-\text{kill}[B])$
 }
}
Summary of Reaching Definitions

<table>
<thead>
<tr>
<th>Reaching Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Transfer function</td>
</tr>
<tr>
<td>(f_b(x))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(\text{Gen}_b): definitions in (b)</td>
</tr>
<tr>
<td>(\text{Kill}_b): killed defs</td>
</tr>
<tr>
<td>Meet Operation</td>
</tr>
<tr>
<td>Boundary Condition</td>
</tr>
<tr>
<td>Initial interior points</td>
</tr>
</tbody>
</table>
II. Live Variable Analysis

• Definition
 • A variable v is **live** at point p if the *value* of v is used along some path in the flow graph starting at p.
 • Otherwise, the variable is **dead**.

• Problem statement
 • For each basic block b,
 • determine if each variable is live at the start/end point of b
 • Size of bit vector: one bit for each **variable**
Effects of a Basic Block (Transfer Function)

- **Observation:** Trace uses back to the definitions
 - \(\text{def} \) def
 - \(\text{def} \)
 - \(\text{use} \)

- **Direction:** backward: \(\text{in}[b] = f_b(\text{out}[b]) \)

- **Transfer function** for statement \(s: x = y + z \)
 - generate live variables: \(\text{Use}[s] = \{y, z\} \)
 - propagate live variables: \(\text{out}[s] - \text{Def}[s], \text{Def}[s] = x \)
 - \(\text{in}[s] = \text{Use}[s] \cup (\text{out}(s)-\text{Def}[s]) \)

- **Transfer function** for basic block \(b \):
 - \(\text{in}[b] = \text{Use}[b] \cup (\text{out}(b)-\text{Def}[b]) \)
 - \(\text{Use}[b] \), set of locally exposed uses in \(b \), uses not covered by definitions in \(b \)
 - \(\text{Def}[b]= \text{set of variables defined in } b.b. \)
Across Basic Blocks

- **Meet operator (\wedge):**
 - $\text{out}[b] = \text{in}[s_1] \cup \text{in}[s_2] \cup ... \cup \text{in}[s_n]$, $s_1, ..., s_n$ are successors of b

- **Boundary condition:**
Example

out[entry] → entry

in[1] → out[1]

n = p
if g

r = n+r

m = n+q
p = m

out[entry] → in[exit]

exit

in[exit]
Liveness: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
IN[Exit] = ∅

// Initialization for iterative algorithm
For each basic block B other than Exit
 IN[B] = ∅

// iterate
While (changes to any IN occur) {
 For each basic block B other than Exit {
 out[B] = ∪ (in[s]), for all successors of B
 in[B] = \text{f}_B(out[B]) // in[B]=\text{Use}[B]∪(out[B]-\text{Def}[B])
 }
}
III. Framework

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reaching Definitions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>forward:</td>
<td>backward:</td>
</tr>
<tr>
<td></td>
<td>out[b] = (f_b(\text{in}[b]))</td>
<td>in[b] = (f_b(\text{out}[b]))</td>
</tr>
<tr>
<td></td>
<td>in[b] = (\land \text{out}[\text{pred}(b)])</td>
<td>out[b] = (\land \text{in}[\text{succ}(b)])</td>
</tr>
<tr>
<td>Transfer function</td>
<td>(f_b(x) = \text{Gen}_b \cup (x \cdot \text{Kill}_b))</td>
<td>(f_b(x) = \text{Use}_b \cup (x \cdot \text{Def}_b))</td>
</tr>
<tr>
<td>Meet Operator ((\land))</td>
<td>(\cup)</td>
<td>(\cup)</td>
</tr>
<tr>
<td>Boundary Condition</td>
<td>out[entry] = (\emptyset)</td>
<td>in[exit] = (\emptyset)</td>
</tr>
<tr>
<td>Initial Interior points</td>
<td>out[b] = (\emptyset)</td>
<td>in[b] = (\emptyset)</td>
</tr>
</tbody>
</table>
Problem 1. “Must-Reach” Definitions

• A definition D \((a = b + c) \) must reach point P iff
 • D appears at least once along on all paths leading to P
 • a is not redefined along any path after last appearance of D and before P

• How do we formulate the data flow algorithm for this problem?
Problem 2: A legal solution to (May) Reaching Def?

- Will the worklist algorithm generate this answer?
What are the algorithm properties?

- Correctness

- Precision: how good is the answer?

- Convergence: will the analysis terminate?

- Speed: how long does it take?