
A Practical Flow-Sensitive and Context-Sensitive
C and C++ Memory Leak Detector

David L. Heine and Monica S. Lam

Computer Systems Laboratory
Stanford University

{dlheine, lam}@stanford.edu

ABSTRACT
This paper presents a static analysis tool that can automatically find
memory leaks and deletions of dangling pointers in large C and
C++ applications.

We have developed a type system to formalize a practical own-
ership model of memory management. In this model, every ob-
ject is pointed to by one and only one owning pointer, which holds
the exclusive right and obligation to either delete the object or to
transfer the right to another owning pointer. In addition, a pointer-
typed class member field is required to either always or never own
its pointee at public method boundaries. Programs satisfying this
model do not leak memory or delete the same object more than
once.

We have also developed a flow-sensitive and context-sensitive
algorithm to automatically infer the likely ownership interfaces of
methods in a program. It identifies statements inconsistent with
the model as sources of potential leaks or double deletes. The al-
gorithm is sound with respect to a large subset of the C and C++
language in that it will report all possible errors. It is also practical
and useful as it identifies those warnings likely to correspond to er-
rors and helps the user understand the reported errors by showing
them the assumed method interfaces.

Our techniques are validated with an implementation of a tool
we call Clouseau. We applied Clouseau to a suite of applications:
two web servers, a chat client, secure shell tools, executable object
manipulation tools, and a compiler. The tool found a total of 134
serious memory errors in these applications. The tool analyzes over
50K lines of C++ code in about 9 minutes on a 2 GHz Pentium 4
machine and over 70K lines of C code in just over a minute.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques;
D.2.4 [Software Engineering]: Program Verification; D.3.4
[Programming Languages]: Processors—Memory Management

This material is based upon work supported in part by the National
Science Foundation under Grant No. 0086160.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

General Terms
Algorithms, Experimentation, Languages, Verification.

Keywords
Program analysis, type systems, memory management, error detec-
tion, memory leaks.

1. INTRODUCTION
Many existing programs are written in C and C++ where memory

needs to be manually managed. Leaking memory and deleting an
object multiple times are some of the most common and hard-to-
find errors in these programs. Memory leaks can cause memory-
intensive and long-running programs, such as server codes, to fail.
Deleting an object that has already been deleted can cause memory
corruption.

1.1 Existing Tools
Dynamic tools like Purify are commonly used for detecting

memory management errors in programs[20]. Purify instruments
a program and reports all allocated memory at program exit that is
not pointed to by any pointers. Unfortunately, it can only find leaks
that occur during instrumented executions and incurs a nontrivial
run-time overhead. Moreover, Purify can only identify the alloca-
tion sites of leaked memory; users are still left with the difficult
task of finding the statements that cause the leak.

A number of automatic static analysis tools, such as PREfix[6]
and Metal[12, 19], have also been developed that help find memory
leaks in programs. These tools aim to identify those cases when a
program loses all references to an object without having deleted
the object. However, without global pointer alias analysis, these
tools cannot track pointers stored in recursive data structures and
container objects. Thus, they can only find memory leaks that oc-
cur close to allocation sites, missing many errors that account for
important leaks in real programs.

Techniques that require user participation have also been pro-
posed. Linear types allow only one reference to each dynamically
allocated object[26]. This restriction is enforced by nullifying the
contents of a linear-typed variable whenever it is read. That is,
whenever a pointer assignment, q = p, is executed, the value of p
is nullified and q becomes the sole reference of the object pointed
to by p. Memory management is simple with linear types; deleting
an object whenever its unique reference is destroyed guarantees no
memory leaks, no double deletes and no dangling references. Un-
fortunately, it is difficult to program with the semantics of linear
types.

The auto ptr template class in the C++ standard library is an
attempt at a practical solution. An auto ptr owns the object it
points to; whenever an auto ptr is destroyed, the object it points
to is automatically deleted. An auto ptr is nullified whenever
it is copied; however, unlike linear types, multiple references are
allowed. Similar concepts are adopted by LCLint[13], which re-
quire programmers to decorate their pointer variables with only
and shared keywords. The burden imposed on the programmer and
the lack of support for polymorphic ownerships in functions render
these techniques unappealing.

1.2 Contributions
We have developed a fully automatic technique that can find

memory leaks and multiple deletes in large C and C++ programs. It
is powerful enough to find leaks of objects whose references have
been stored in recursive data structures in C++ programs. The main
contributions of this paper include the formalization of a practi-
cal memory management scheme based on object ownership, a
fully automatic ownership inference algorithm, and validation of
the ideas via an implementation and an experiment.

1.2.1 A Practical Object Ownership Model
One way to ensure that no memory is leaked is to check that an

object is deleted whenever its last reference is obliterated. Enforc-
ing such a property is difficult as it requires, among other things,
tracking all pointers to recursive data structures carefully. In fact,
this is too hard even for programmers who, when dealing with ob-
jects that have multiple aliases, often resort to dynamic reference-
counting schemes. However, dynamic reference counting can be
expensive and cannot handle circular data structures.

In practice, programmers often adopt simple programming con-
ventions to help them manage memory. One such convention is
object ownership, which associates with each object an owning
pointer, or owner, at all times. An owning pointer holds the exclu-
sive right and obligation to either delete the object it points to or
to transfer the right to another owning pointer. Upon deleting the
object it points to, an owning pointer becomes non-owning. One
or more non-owning pointers may point to the same object at any
time. Note that this notion of ownership is different from the con-
cept of ownership for encapsulation[7, 9, 21], which assumes that
all accesses to an object must go through an owning pointer.

This model eliminates the possibility of deleting an object more
than once and guarantees the deletion of all objects without ref-
erences. However, like reference counting, this model may leak
objects whose owning pointers form a cycle. This is rare in prac-
tice because most programs are designed with acyclic ownership
structures.

Well-designed object-oriented programs often have simple easy-
to-use external method interfaces. One common idiom is to require
that pointer member fields in an object either always or never own
their pointees at public method boundaries. Correspondingly, the
destructor method of an object contains code to delete all and only
objects pointed to by owning member fields. By adopting this as-
sumption, our tool can reason about object ownership with the same
relative ease afforded to programmers.

We have developed a formal type system for a small language to
capture the object ownership model as described above. We have
also expanded this formal model to handle most of the safe fea-
tures of the full C and C++ languages. Our ownership model is
applicable to real programs because:

1. Unlike linear types, multiple non-owning references are al-
lowed to point to the same object.

2. Ownership can be transferred. Each object has an owner im-
mediately upon creation, and the ownership may be trans-
ferred from owner to owner until the object is deleted.

3. Normal assignment and parameter passing semantics are
supported by allowing ownership to be optionally trans-
ferred. In statement u = v, if v owns its object before the
statement, it can either retain ownership, or transfer owner-
ship to u and become a non-owning pointer itself after the
assignment.

4. Object member fields are required to have the same owner-
ship only at public method boundaries. More specifically,
this invariant is required to hold only at method invocations
where the receiving object may not be the same as the send-
ing object.

5. Polymorphic method interfaces are supported. The own-
ership type signatures of methods are represented by con-
straints on the ownerships between input and output param-
eters. The same method may be invoked using parameters
with different ownerships as long as the constraints are satis-
fied.

Note that we are not advocating the exclusive use of an owner-
ship model for all objects. It is sometimes appropriate to manage
some objects in a program using other techniques, such as refer-
ence counting and region-based management. Our system does not
require that memory be managed solely with the ownership model.

1.2.2 Automatic Ownership Inference
Our algorithm automatically infers the ownership signatures for

all pointer member fields and method interfaces directly from the
code and can be applied to existing C and C++ programs without
any modification. The algorithm is sound, i.e. it reports all possi-
ble errors, for the large safe subset of C++ described in Section 3.5.
The algorithm is also practical and useful for the following reasons.
Being flow-sensitive and context-sensitive, the algorithm is power-
ful yet fast enough to run on real programs. It is designed to isolate
the sources of errors and not let them propagate. It identifies those
warnings most likely to correspond to errors. Lastly, it helps users
understand the error reports by showing them the assumed method
interfaces.

The object ownership model is designed to allow fast infer-
ence. Tracking properties of objects, such as the count in refer-
ence counting, requires tracking aliases of objects, which is ex-
pensive. Ownership is not a property associated with the objects
being managed, but rather an abstract property associated with the
pointer variables themselves. We place ownership inference con-
straints on pointer variables to ensure that ownership is conserved
between assignments and parameter passing in procedures. Meth-
ods in C++ classes are allowed to transfer ownership into and out
of their pointer member fields. By assuming that member fields
are either always owning or never owning at public method bound-
aries, we can easily track member fields in the this object within
methods in a class. Alias analysis is rendered unnecessary by not
allowing ownership to be transferred to: pointer member fields out-
side of their class, static pointer variables, pointers to pointers or
pointer arrays. This model, while simple, is sufficient to find many
errors in real code.

A powerful flow-sensitive and context-sensitive ownership in-
ference. The algorithm tracks ownerships flow-sensitively as they
are transferred between local variables and context-sensitively as
they are transferred between procedural parameters. Ownership
is tracked with 0-1 valued variables where 1 means owning and

0 means non-owning. Ownership inference is modeled as solving
limited forms of 0-1 linear inequalities. We represent method own-
ership types polymorphically and succinctly as 0-1 linear inequali-
ties on the ownerships of input and output parameters. We also use
a sparse representation akin to semi-pruned SSA form[5] to reduce
the size of the constraints per method. While ownership constraints
can be resolved with a general-purpose solver, we have developed
a specialized ownership constraint solver for efficiency and to gain
control over how inconsistencies are reported.

A sound and practical tool by prioritizing constraints. It can
be difficult to deduce the actual cause of errors reported by poly-
morphic type systems. Especially because our model does not en-
compass all legal ways of managing memory, a sound algorithm
can potentially generate many false positive warnings, which could
render the tool ineffective. Our solution is to satisfy the more pre-
cise constraints first so as to minimize the propagation of errors as-
sociated with the less precise constraints. In addition, the warnings
are ranked according to the precision of the constraints being vio-
lated. By concentrating on the high-ranked warnings, and with the
help of the automatically computed method signatures, the user can
find errors in the program with reasonable effort. The advantage of
having a sound system is that researchers can browse through the
low-ranked warnings to understand the system’s weakness and un-
cover opportunities for further improvement.

1.2.3 Validation
We have implemented the algorithm presented in this paper as

a program analysis pass in the SUIF2 compiler infrastructure. We
applied the system, called Clouseau, to six large open-source soft-
ware systems, which have a total of about 400,000 lines of code.
Every one of the C++ programs in our experiment contains classes
that conform to our object ownership model. Clouseau found 134
definite errors in the programs. It analyzed over 50K lines of C++
code in about 9 minutes on a 2 GHz Pentium 4 machine.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2 gives an

overview of the design of our ownership model. Section 3 presents
our formal ownership type system for a simple object-oriented pro-
gramming language and describes how we extend the system to C
and C++. We describe our type inference algorithm in Section 4
and present experimental results in Section 5. We describe related
work in Section 6 and conclude in Section 7. Appendix A contains
the static typing rules for our ownership type system.

2. OVERVIEW
This section presents a high-level overview and the rationale for

our system, with the help of several examples. We describe how
we create constraints to model ownership in a program and how we
order the satisfaction of constraints to improve the quality of error
reports.

2.1 Optional Ownership Transfer in Assign-
ments

Pointers returned by allocation routines and pointers passed to
deallocation routines are, by definition, owning pointers. Owner-
ship of all other pointer variables needs to be inferred, as illustrated
by the following simple example:

EXAMPLE 1. Assignment statements.

u = new int; (1)
z = u; (2)
delete z; (3)

The object allocated in statement (1) is clearly not leaked because
it is deleted in statement (3) through the alias z. Our system, how-
ever, does not track pointer aliases per se. Instead, it knows that u
is an owner after the allocation function in statement (1) and that z
is an owner before the delete operation in statement (3). Statement
(2) represents a possible transfer of ownership from u to z. All
the constraints can be satisfied by requiring that the ownership be
transferred from u to z, and thus the program is leak-free. 2

Notice that the analysis is necessarily flow-sensitive. The source
and destination variables of an assignment statement may change
ownership after the execution of the assignment. In addition, both
forward and backward flow of information is necessary to resolve
the ownership of variables, as illustrated by the example above. We
model all statements as constraints such that if all the constraints
extracted from a program can be satisfied then the program has no
memory leaks. Our analysis is not path-sensitive; a variable must
have the same ownership at the confluence of control flow paths.

2.2 Polymorphic Ownership Signatures
Our analysis uses an accurate fixpoint algorithm to compute

polymorphic ownership interfaces for each method in the program.
The analysis initially approximates the effect of each method by
ignoring the methods it invokes. It then instantiates the approxi-
mation of the callee’s constraints in the caller’s context to create a
better approximation. This step is repeated until the solution con-
verges.

EXAMPLE 2. Recursive procedures.

int *id(int *a) {
int *t = 0;
if (pred()) {

int *c = new int;
t = id(c);
delete t;

};
return(a);

}

The recursively defined id function returns the original input
value, with the side effect of possibly creating and deleting a num-
ber of integers. Even though id is called with an owning input
parameter and return value in the recursive cycle, our analysis cor-
rectly summarizes the function as requiring only that the input pa-
rameter and the return value have identical ownerships. 2

2.3 Object Ownership
For C++ programs, member fields in objects are assumed to be

either always owning or never owning at public method bound-
aries. Our analysis starts by examining a class’s constructors and
its destructor to determine the ownership signatures of its fields,
i.e. whether the fields are owning or non-owning at public method
boundaries. Because an object’s member fields can only be mod-
ified by methods invoked on the object, our analysis only needs
to track member fields of the this object intraprocedurally and
across methods on the this object. At other method invocation
boundaries, member fields take on the ownership specified by their
signatures.

EXAMPLE 3. Object invariants.

class Container {
Elem *e;

public:
Container(Elem *elem) {

e = elem;
}
void set_e(Elem *elem) {

delete e;
e = elem;

}
Elem *get_e() {

return(e);
}
Elem *repl_e(Elem *elem) {

Elem *tmp = e;
e = elem;
return(tmp);

}
˜Container() {

delete e;
}

}

Member field e can be easily recognized as an owning mem-
ber of the Container class because the destructor ˜Container
deletes it. Once e has been identified as an owning member field,
the analysis can infer the ownership of pointers passed to and
returned from each method of the class. The constructor Con-
tainer and set e must be passed an owning pointer; the return
value of get e must not be owning; the argument and return of
repl e must both be owning. This example also illustrates a lim-
itation of the model. In practice, many classes implement a poly-
morphic get e method and a set e that does not delete the orig-
inal member field. The object invariant is temporarily violated by
code that uses get e first to retrieve an owning pointer then uses
set e to deposit an owning pointer in its place. Our analysis flags
this idiom as a violation of the ownership model. 2

2.4 Reporting Errors
It is important that a leak detection tool pinpoints the statements

that leak memory. In our system, a memory leak shows up as an
inconsistency among constraints collected from a number of state-
ments. The tool should strive to identify which among these state-
ments is likely to be erroneous. Our solution is to try to satisfy
the more precise constraints first, classify those constraints found
to be inconsistent as errors and leave them out of consideration in
subsequent analysis. Furthermore, we rank all the identified errors
according to the precision of the constraints being violated.

EXAMPLE 4. For the class defined in Example 3, suppose there
is one illegal use of the Container class that deletes the element
returned by get e. Had the analysis considered the constraints
generated by this usage first, it would conclude that member field
e is not owning in the Container class. This would lead the
analysis to generate errors for all correct uses of the class, including
one for the ˜Container destructor function. Our analysis avoids
this problem because constraints from destructors and constructors
are considered to be more precise and are thus satisfied first. 2

Our system does not allow any writes of owning pointers to fields
in C structures or arrays of pointers. Many violations of this restric-
tion are expected in real programs. To avoid propagating such inac-
curacy to many other statements in the program, our algorithm first

analyzes the code assuming that indirect accesses can optionally
hold owning pointers, then re-analyzes it with the stricter constraint
to generate all the warnings necessary to make the system sound.
More details on constraint ordering can be found in Section 4.3.

3. OBJECT OWNERSHIP CONSTRAINTS
This section presents a formal type system that models object

ownership. We define a small object-oriented programming lan-
guage with typed ownerships. This language associates 0-1 own-
ership variables with pointers to indicate whether they own their
pointees. Every member field in a class has a field signature which
indicates if it is owning or non-owning at public method invoca-
tions. Each method also has an ownership signature which speci-
fies constraints on the ownership variables associated with param-
eters and results. Note that although this language is defined with
declared field and method signature ownerships, our inference al-
gorithm automatically infers these signatures from C and C++ pro-
grams.

Well-typed programs in our ownership type system can be
shown, using an approach developed by Wright and Felleisen[28],
to satisfy the following two properties:

PROPERTY 1. There exists one and only one owning pointer to
every object allocated but not deleted.

PROPERTY 2. A delete operation can only be applied to an
owning pointer.

Property 1 guarantees no memory leaks; objects not pointed to by
any variables are always deleted. Together, both properties guaran-
tee that objects can only be deleted once.

We first present the language in Section 3.1. Sections 3.2 and 3.3
describe the handling of intraprocedural constraints and interproce-
dural constraints, respectively. Section 3.4 describes how we han-
dle null pointers. Finally, Section 3.5 describes extensions to cover
most of the safe features in C and C++.

3.1 A Language with Typed Ownership
A program P consists of a set of classes CL(P); each class

c ∈ CL(P) has an ordered set of member fields F(c), a construc-
tor newc, a destructor deletec and a set of other methods M(c).
Constructors and destructors can execute arbitrary code and call
other methods. Constructors have a list of formal arguments and
a return value; destructors have a single implicit this argument,
and all other methods have an implicit this argument, formal ar-
guments, and a return value.

A method body contains a scope statement, which can access
the this variable, local variables and parameters. Field accesses
are allowed only on the this object. The language has a number
of assignment statements. Simple variables can be assigned from
NULL values, variables, class fields, and method invocation results.
Fields in a class can only be assigned from variables. The language
also has a number of compound statements: composition, if and
while.

This language has ownership variables associated with parame-
ters for each method and member fields for each class. The owner-
ship variables may be given two values κ ∈ {0, 1}, where κ = 1
means owning, κ = 0 means non-owning. Constraints on owner-
ship are represented as 0-1 linear inequalities over ownership vari-
ables. These constraints form a semi-lattice. The top element >
in this lattice is true, and the bottom element ⊥ is false. The
meet operator in the lattice corresponds to the conjunction of 0-1
linear constraints. C1 ≤ C2 if and only if solutions satisfying C1

also satisfy C2.

Each member field f in class c has an associated field ownership
type FOTc(f), [ρ ; ρ=κ], which specifies that field f is associated
with ownership variable ρ whose value is κ. Whenever a method
is invoked on a receiver object other than this, fields in both the
sender and receiver objects must obey the ownerships specified in
their respective field ownership types.

Each method m in class c has an associated method ownership
type MOTc(m), [~α ; C]. ~α specifies the ownership variables for
this, the formal arguments, the class member fields at method
entry and exit, and the return value. C specifies the set of linear
constraints that must be satisfied by these ownership variables. The
signatures for constructors include ownership variables for formal
arguments, fields on method exit, and the return value. The sig-
natures for destructors include ownership variables for this and
fields on method entry.

Typing rules in our system ensure that once an object is created,
its ownership is held by some pointer variable. This ownership may
be transferred via assignments and parameter passing in method
invocations or stored in an owning member field. When the object
is finally deleted, the owning variable relinquishes ownership and
all objects pointed to by owning member fields are also deleted.
Typing judgments for statements in our system have the form

B ;D ;C ` s ⇒ D
′;C ′

which states that given a mapping from variables to their declared
class type B, a mapping from variables to their ownership variables
D, and a set of ownership constraints C, it is legal to execute the
statement s, which results in a new ownership mapping D′ and new
constraints C′.

The static ownership typing rules are shown in Appendix A. Due
to space constraints, we will discuss only one representative infer-
ence rule in detail to give readers a flavor for how the system is
defined formally and focus on explaining the intuition behind the
formulation.

3.2 Intraprocedural Ownership Constraints
Assignment Statements. Let us first consider an assignment

statement z = y, where y and z are both simple variables. The in-
ference rule for the simple assignment statement, rule STMT-ASGN,
is given in Appendix A and reproduced here:

D ` y : ρy, z : ρz

ρz
′, ρy

′

fresh C
′ = C∧{ρz=0}∧{ρy=ρy

′ + ρz
′}

B ;D ;C ` z = y ⇒ D [z 7→ρz
′, y 7→ρy

′];C ′

The term D[z 7→ρz
′] is the functional update of the map D that

binds z to ρz
′ after removing any old binding.

The ownerships of both y and z can change after the state-
ment. ρy and ρz represents the ownerships of y and z before the
statement; ρy

′ and ρz
′ represent their ownerships after the state-

ment. Since z is overwritten, it must not own its pointee before
the statement (ρz=0), otherwise memory is leaked. The constraint
ρy=ρy

′ + ρz
′ guarantees the conservation of ownership required

by Property 1. If y owns its pointee before the statement, it either
retains ownership or transfers it to z after the statement. If y does
not own its pointee, neither y nor z is an owner after the statement.

Within a method, fields of the this object are treated like local
variables. We define two rules STMT-FLDASGN and STMT-FLDUSE

to handle assignments to and from member fields of the this ob-
ject. These are similar to their STMT-ASGN counterpart.

A NULL pointer can be treated as either owning or non-owning.
In C++, it is legal to delete a NULL pointer. We have found this
relaxed constraint useful for analyzing C as well. Thus, if the right
hand side of an assignment statement is NULL, we only require that
the overwritten variable before the assignment be non-owning as

given in the rule STMT-NULL. A new, unbound, ownership variable
is generated to represent the ownership of the destination variable
after the assignment.

Control flow statements. The rule for composition, STMT-
COMP, is straightforward. Our treatment of control flow is path-
insensitive. At join points, variables and fields must have the same
ownership at the confluence of control flow paths, as reflected in
rules STMT-IF and STMT-WHILE.

3.3 Interprocedural Constraints
Constructors (new) and destructors (delete) are special be-

cause the former are guaranteed to return owning pointers and
the latter always expect owning this pointers. Thus, we have
three separate inference rules, CONSTR-GOOD, DESTR-GOOD, and
METHOD-GOOD, to specify when constructors, destructors, and all
other methods are well-typed.

Local variables defined in the scope statement in each method
must not carry ownership on entry and exit; return variables start
out non-owning, but may carry ownership upon exit. The owner-
ship constraints imposed by the method’s scope statement on all ex-
ternally visible variables are summarized by a method’s ownership
type (MOT). Variables that are externally visible include the im-
plicit this parameter, input parameters, member fields at method
entry and exit, and the return value.

To keep our type system simple, we have adopted the conven-
tion that all variables to be passed as input parameters are first as-
signed to fresh variables, which are then passed as parameters in
their place. This implies that all owning actual parameters can be
assumed to pass their ownerships to their formal counterparts. That
is, formal input parameters may be owning or non-owning upon en-
try, but must not be owning on exit. This convention also avoids the
complexity that arises when the same variable is passed to multiple
arguments of a method.

We refer to method invocations where the sender and the receiver
are known to be the same object as internal. All other method in-
vocations are considered external. As indicated by the inference
rule for internal method invocations STMT-INTCALL, each execu-
tion of r = this.m(. . .) involves instantiating the constraints in
the declared method ownership type of m and replacing the for-
mal ownership variables with fresh variables. Equations are set up
between the ownerships of actual parameters and fields and their
corresponding instantiated formal variables. The ownership of the
implicit this argument may be optionally passed to the invoked
method. Furthermore, the ownership of the return value is trans-
ferred to variable r in the caller, which must not hold ownership
before the statement.

The inference rule for external method calls STMT-EXTCALL dif-
fers from the rule for internal calls in its treatment of member fields.
Member fields in both the sender and receiver objects must match
their respective declared field ownership types (FOT). The rules
for constructors STMT-CONSTR and destructors STMT-DESTR are
slight modifications of that for external calls due to their differing
parameter and return signatures.

EXAMPLE 5. Shown in Figure 1(a) is a short C++ program with
method ownership types included as comments. The method own-
ership type of n, MOTc(n), is:

[α αs αt αf αf
′ αr

′; α = 0∧αt = 1∧αf = 0∧αs = αr
′+αf

′],

where α represents the ownership of this at entry, αs and αt

are the ownership variables of the first and second arguments, αf

and αf
′ are the ownership variables for the field f at method entry

and exit, respectively, αr
′ is the ownership variable of the returned

result.

This signature says that the ownership of this is not passed
into the method, the input parameter t must be an owning pointer,
the member field f must be non-owning at method entry. In addi-
tion, this signature polymorphically captures the fact that the first
argument s can be called with either an owning or a non-owning
pointer and allows the ownership, if present, be transferred to ei-
ther the member field f or the returned result.

It is easy to tell from reading the code in method m that all the
three objects created are deleted and not leaked. The second in-
vocation of method n is particularly interesting because the same
object is passed as the first and second arguments to the method, a
fact that our analysis captures as a constraint in the caller.

The ownership signature in method m has three ownership vari-
ables: α represents this at the entry of method m, αf and αf

′

represent field f at entry and exit. Statements where ownerships
may change are labeled with the names of the freshly generated
ownership variables. We use ρai

to denote the ownership of vari-
able a in method m generated after executing statement i. We use
σj

b to denote the instantiated ownerships for variable b in the jth
invocation of n. The extracted ownership constraints of method m
are given in Figure 1(b).

To keep the example short, the constraints for CALL #1 and
CALL #2 directly encode the choice of ownership transfer for each
of its arguments. In addition, we have omitted the ownership vari-
ables associated with this and the initial ownership values of the
local variables in m, all of which are constrained to be non-owning.

As shall be shown in Example 6, the seemingly complex con-
straints in Figure 1(b) have a simple structure and are satisfiable.
Thus, there is no memory leak within the method. Projecting away
all the externally invisible variables gives the constraints in the de-
clared ownership type in Figure 1(a).

This example also illustrates how our system handles aliases.
The signature of n does not depend on whether the input param-
eters are aliased. The alias between x and y is implicitly captured
by an ownership constraint in the calling method on the pointer
variables themselves, ρx5

= ρx6
+ ρy6

. 2

3.4 Handling Null Pointers
Programs often first check if a pointer is null before deleting the

object:

if (p != NULL) delete p

This idiom is problematic for our path-insensitive system as de-
scribed above because objects are deleted on one path but not the
other. Our solution is to handle the predicates that test if a pointer
is NULL by inserting an explicit NULL assignment to the pointer
on the appropriate path. For example, the previous statement is
translated to:

if (p != NULL)
delete p

else
p = NULL;

Since NULL is treated as both an owning and non-owning pointer,
the analysis will correctly deduce that the pointer is no longer own-
ing when the then and else branches merge. We also use an
intraprocedural analysis to propagate NULL values in each method
so that they can be more precisely represented as either owning or
non-owning.

(a)
class c {

int* f;
// MOTc(n) = [α αs αt αf αf

′
αr

′;
// α=0 ∧ αt=1 ∧ αf =0 ∧ αs=αr

′ + αf
′]

int* n (int* s, int* t) {
delete t;
f = s;
int* r = s;
return r;

}
// MOTc(m) = [ααf αf

′; α=0 ∧ αf=0 ∧ αf
′=0]

void m () {
int* u = new int; (1) // ρu1

int* v = new int; (2) // ρv2

int* w = n(u, v); (3) // ρu3
ρv3

ρf3
ρw3

// σ
1
s σ

1

t σ
1

f
σ

1

f

′

σ
1
r
′

delete w; (4) // ρw4

c* x = new int; (5) // ρx5

c* y = x; (6) // ρy6
ρx6

c* z = n(x, y); (7) // ρx7
ρy7

ρf7
ρz7

// σ
2
s σ

2

t σ
2

f
σ

2

f

′

σ
2
r
′

} ...
}

(b)

ρu1
= 1 ∧ ρv2

= 1 [stmt 1, 2]
ρu1

= ρu3
+ σ1

s ∧ ρv2
= ρv3

+ σ1

t

∧ αf = σ1

f ∧ σ1

f

′

= ρf3
∧ σ1

r
′

= ρw3
[CALL #1]

σ1

t = 1 ∧ σ1

f = 0 ∧ σ1

s = σ1

r

′

+ σ1

f

′

[MOTc(n)]
ρw3

= 1 ∧ ρw4
= 0 [stmt 4]

ρx5
= 1 ∧ ρx5

= ρx6
+ ρy6

[stmt 5, 6]
ρx6

= ρx7
+ σ2

s ∧ ρy6
= ρy7

+ σ2

t

∧ ρf3
= σ2

f ∧ σ2

f

′

= ρf7
∧ σ2

r
′

= ρz7
[CALL #2]

σ2

t = 1 ∧ σ2

f = 0 ∧ σ2

s = σ2

r
′

+ σ2

f

′

[MOTc(n)]
ρu3

= 0 ∧ ρv3
= 0 ∧ ρw4

= 0 ∧ ρx7
= 0

∧ ρy7
= 0 ∧ ρz7

= 0 ∧ ρf7
= αf

′ [EXIT(m)]

Figure 1: (a) A short C++ program with method ownership
types and (b) ownership constraints for method m.

3.5 Handling C and C++ Features
While our small language is object-oriented, it can also be used

to model C by simply treating all functions as methods defined for
one global this object. We have further extended the system to
handle various C++ features including multiple inheritance with
virtual dispatch, static functions, multiple constructors per class
and templates. Use of these features in a program will not cause
any unnecessary warnings in our system.

Our model currently requires atomic memory allocation and
object construction, as well as atomic object destruction and de-
allocation. Breaking these invariants by using the C++ placement
new syntax or making explicit calls to the destructor will generate
warnings.

Our system does not yet model ownerships for the following C
and C++ language features: aliases to the address of a pointer mem-
ber field in a class, concurrent execution, exception handling, the
use of unsafe typecasts, pointer arithmetic, and function pointers.
The use of any of these features may prevent our system from iden-
tifying all potential leaks. Conversely, if none of these features are

used, our algorithm is sound and will report all the potential mem-
ory leaks.

4. OWNERSHIP INFERENCE
Our ownership inference algorithm automatically infers the

“likely” ownership signatures of fields and methods. It identifies
statements that are inconsistent with these signatures and warns of
potential memory leaks and double deletes. Constraints are intro-
duced in a carefully designed order so as to isolate the source of
errors. If a constraint is found to be inconsistent with the already
established constraints, it is discarded and its associated statement
is labeled as an error. In the following, we first describe our spe-
cialized constraint solver used to determine if a set of constraints
is consistent. Then we describe the interprocedural type inference
algorithm. Finally we present the order in which constraints are
considered.

4.1 Constraint Resolution
The constraints on ownership variables as shown in the inference

rules in Appendix A are all 0-1 integer equalities. As introduced
in Section 2.4 and further described in Section 4.3.3, 0-1 integer
inequalities are also introduced by our algorithm to minimize error
propagation. Ownership constraints are of the form:

ρ=0 | ρ=1 | ρ=Σiρi | ρ ≥ Σiρi

We have developed a solver optimized to take advantage of the
special properties held by ownership constraints. Our attempt to ap-
ply a general solver to this problem suggests that it is significantly
slower than our special-purpose solver.

4.1.1 Ownership Graphs
Ownership constraints can be represented by a bipartite owner-

ship graph G = 〈N, V, E〉, where N is a set of partitions of own-
ership variables, V is a set of flow nodes representing non-constant
constraints, and E is a set of directed edges connecting nodes in N
to nodes in V and vice versa. Each partition n ∈ N may have a
label, L(n), which can either be 1 representing owning or 0 rep-
resenting non-owning. Initially every ownership variable is placed
in its own partition. Our solver gradually rewrites the ownership
graph to create smaller, equivalent graphs, along with ownership
partitioning functions π : O → N , which map elements in the set
of ownership variables O to their respective partitions.

Constant constraints are represented by labeling the partitions
accordingly. Each non-constant constraint

ρ =
∑

i
ρi or ρ ≥

∑
i
ρi

is represented by a flow node v ∈ V , an edge (π(ρ), v) and edges
(v, π(ρi)), for all i. Thus, a flow node has one incoming edge
and possibly multiple outgoing edges. Flow nodes are so named
because they have the following properties:

1. If the source of the incoming edge of a flow node is labeled
0, the outgoing edges must also have destinations labeled 0.

2. If the source of the incoming edge of a flow node is labeled
1, then at most one outgoing edge has a destination labeled 1.
In the special case where the flow node represents an equality
constraint, then exactly one outgoing edge has a destination
labeled 1.

4.1.2 Consistency Checks
We now describe how our solver checks if a new constraint is

consistent with a given set of consistent constraints, represented as

an ownership graph G = 〈N, V, E〉 and a partitioning function π,
and returns the combined set of constraints if no inconsistency is
detected.

If the new constraint is a constant constraint, ρ = κ, κ ∈ {0, 1},
we assign κ to L(π(ρ)). If π(ρ) has already been given a different
label, the constraint is inconsistent. If the new constraint is a non-
constant constraint, we represent the constraint by adding a new
flow node and corresponding edges to G as described above. Next,
we apply the rewrite rules below repeatedly to G until none is ap-
plicable. If any application of the rewrite rules requires assigning a
labeled partition with a different value, the new constraint is found
to be inconsistent.

Before describing the rewrite rules, let us define a few terms. We
say that a node n reaches n′ if there exists a path of edges in E that
lead n to n′. To unify node n′ with node n, we merge the partition
of n′ into n by assigning L(n′) to L(n) and replacing flow edges
(v, n′) and (n′, v) with edges (v, n) and (n, v), respectively. The
rewrite rules we use are as follows:

[EDGEREMOVAL]. Remove a flow node and its edges if its pre-
decessor and successor nodes are labeled.

[SINGLENODE]. If an equality flow node v has a single predeces-
sor n and a single successor n′, unify n and n′.

[ZEROIN]. If L(n) = 0, assign 0 to L(n′), for all n′ reachable
from n.

[ZEROOUT]. If L(n) = 0, eliminate all (v, n) edges in E.

[ONEOUT]. If L(n) = 1, assign 1 to L(n′) for all n′ reaching n.

[MULTIPATH]. If a flow node reaches the same partition n via two
distinct paths, assign 0 to L(n).

[CYCLEELIMINATION]. Unify all partitions along a cyclic path
and assign 0 to any partition reachable from the unified par-
tition.

All but the last rule are self-explanatory. To understand the CY-
CLEELIMINATION rule, we consider two cases. If a partition in
a cycle is labeled 1, it must pass ownership back to itself through
the cycle, thus all other partitions along the cycle must also be la-
beled 1. Conversely, if a partition in a cycle is labeled 0, all other
partitions must also necessarily be labeled 0. In either case, no
ownership is passed downstream.

We refer to the ownership graph obtained by the rewrite pro-
cedure as the canonical ownership graph. It is easy to show that a
canonical ownership graph consists of a set of unconnected directed
acyclic graphs (DAGs), whose root partitions may be labeled 1 and
the rest unlabeled. This graph is trivially satisfiable if one of the
following is true:

1. None of the root nodes is labeled. Labeling all nodes 0 is a
solution.

2. The labeled root nodes have no common descendant. A so-
lution can be found by assigning 1 to an arbitrary descendant
of a labeled root node and 0 to all others.

In the general case, if the above two simple tests fail, we can check
the connected components of the DAG independently for satisfia-
bility; these DAGs are found to be small in practice.

EXAMPLE 6. Figure 2 is the ownership graph derived from
method m in Figure 1 with both calls to method n instantiated.
Flow nodes are represented simply by the equal sign (=). Square

fα
0

σ ′f1

=

0

′s2σ

′r2′σ

=

= =

10

1

′t2σ
0

=

0

1

1

=

σ ′s1

′f2′σα ′f ′z7ρ

′y7ρ

′y6ρ′x6ρ

′x5ρ

′u3ρ

′u1ρ

′x7ρ
σ f

1′
0

σ ′f2 ′f3ρ

′f7ρ
0

′w4ρ

=

0

1

1
σ t

1

′v2ρ

′v3ρ

σ r
1′ ′w3ρ

Figure 2: Ownership graph of method m in Figure 1 after in-
stantiations of n.

nodes represent variables visible outside of m; circles represent
variables internal to m. Each square and circle represents a parti-
tion, unless it is embedded in an oval, which represents the unifi-
cation of the variables therein. Each partition node is labeled with
its ownership assignment, if one is known. Edges in the ownership
graph are represented by arrows. All nodes and edges instantiated
from method n are represented by dotted lines. It is easy to see the
solution from this graphical representation. The ownerships held
by ρu1

, ρv2
and ρx5

all must flow down the right edge of each flow
node because the rightmost descendant in each case is labeled 1.
2

4.2 Interprocedural Analysis
Our algorithm is polymorphic, or fully context-sensitive, in that

it finds the least constrained signature for each method and field
ownership type in well-typed programs. The algorithm introduces
no inaccuracy even in the presence of recursive cycles. This section
describes how we find the method ownership types assuming that
field ownership types have already been found. We will discuss
how field ownerships are handled in Section 4.3.

The algorithm first creates a set of constraints representing the
effect of each method, assuming that the called methods have >
for constraints. It then iterates to find a better approximation until
the solution stabilizes. Our algorithm precomputes strongly con-
nected components from a program’s call graph. Method evalua-
tion is performed in reverse topological order on the components
with iteration needed only within components. Whenever the own-
ership type of a method is changed, all the methods that invoke the
changed method are re-evaluated.

To create the initial summary of each method, we collect the con-
straints for each statement in the method according to the inference
rules presented in Appendix A, ignoring method invocations. To
handle arbitrary control flow in C and C++ programs, we use an
SSA-like algorithm to generate ownership variables in the method
and unifications of ownership variables at the join points of control
flow. Since ownerships may change for both the source and desti-
nation variables in an assignment statement, we have adapted the
original SSA algorithm to create new ownership variables not only
for the destination variables but also for the source variables. We
prune the SSA-like form by removing all the unnecessary joins for
variables whose live ranges are limited to one basic block[5]. We
also apply intraprocedural dead-code elimination to further reduce
unnecessary assignments in the code.

The solver defined in Section 4.1 is applied to the constraints
collected to create a canonical ownership graph for each method.

Note that the system may be found to be inconsistent in the process
and only consistent constraints are used to summarize a method.

In the iterative step, a method is visited only if the signature of
at least one of its callees’ has changed. For each callee with new
constraint information, we first reduce its current ownership con-
straints to pure relations on formal parameters. We project away
the internal partition nodes by connecting each input parameter to
a fresh flow node, which is then connected to all output parameters
reached by that input. This may create many more edges but limits
the name space of the ownership partitions. These relations be-
tween formal parameters are then instantiated in the calling context
by substituting actual parameters for the formal parameters. The
solver is then applied to check the constraints for consistency and
to simplify it.

(a)

(b)

1

==
1σ ′s1

1′r1′σ

1
′t1σ

0
′r2′σ

1
′t2σ′s2σ

=
′fα

1

0

1

0

1

0

0
fα σ ′f1 σ ′s1 ′r1′σ ′t1σ

′r2′σ

′t2σ

fα
0

σ ′f1

σ f
1′

0
σ ′f2

′f2′σ′fα ′s2σ

′f2′σ

σ f
1′σ ′f2

Figure 3: Ownership graph of method m in Example 5 after (a)
intraprocedural analysis and (b) interprocedural analysis.

EXAMPLE 7. Returning to the example in Figure 1, our algo-
rithm first creates an intraprocedural summary for methods n and
m. It calls the solver to simplify the constraints internal to each
method, ignoring the constraints of any callees, and projects away
all internal variables other than parameters. The result for m after
the first step is shown in Figure 3(a). All that remains in the own-
ership graph for m are the external parameters αf and αf

′ and the
parameters passed into and out of its callee n. Note that the instan-
tiated constraints, shown in dotted lines, are not visible to this first
step; they are shown here only for reference.

The second step of the algorithm instantiates the constraints from
n into the intraprocedural summary of m and applies the solver
to the resulting graph, yielding the result shown in Figure 3(b).
The final signature for m obtained by projecting away all internal
variables (and including the ownership variable α for this, which
is not included in the figure) is simply:

[α αf αf
′; α = 0 ∧ αf = 0 ∧ αf

′ = 0].

2

One complication that arises in practice is that programs often
invoke functions or methods for which no source code is available.
These include system calls and calls to libraries that are compiled
separately. We predefine method ownership types for a number of
system calls like strdup, strcpy and memcpy. We also allow
the user to give a specification for other routines. If no specification
is provided, we assume that parameters to undefined functions are
non-owning.

4.3 Constraint Ordering
Without a specification, it is impossible to tell which constraints

among a set of inconsistent constraints are the erroneous ones.
Thus we can only use heuristics to find the statements most likely to
be incorrect. Misclassifying an erroneous statement as correct can
result in misclassifying many correct statements as erroneous. This
propagation of errors can result in many warnings, which require
more user effort to diagnose.

Some statements are more precisely modeled than others. For
example, allocations are precisely modeled because they will al-
ways return an owning pointer. On the other hand, the constraint
that owning pointers cannot be stored indirectly is imprecise and is
likely to be violated. Similarly, some methods are less likely to con-
tain ownership errors than others. Destructors are more likely to be
correct in handling member fields than methods that invoke them.
Our approach to minimizing error propagation is to classify con-
straints according to their degree of precision and to try to satisfy
the more precise constraints first. In addition, we rank warnings
according to the precision of the constraints being violated.

4.3.1 Typing Fields Before Methods
We assume that the implementation of a class is a more reliable

source for identifying an interface than code that uses the class.
Therefore, our top-level algorithm has two steps: it first finds the
ownership type of member fields in each class by considering only
methods within the class; it then uses the field ownerships in a
whole-program analysis to find the method ownership signatures.

To find class member field ownerships, we use an algorithm sim-
ilar to the one described in Section 4.2. This step analyzes a class
at a time. Because even constructors and destructors may invoke
other methods, an interprocedural analysis is used. We model exter-
nal invocations by simply assuming that constructors return owning
pointers and destructors accept owning pointers as arguments and
ignoring all other constraints. Member field ownerships are ini-
tialized to >, meaning they can be either owning or non-owning.
Destructors and constructors are analyzed before other methods. A
member field is presumed to be owning if it is owning at the entry
of the destructor or owning at the exit of any of the constructors. It
is presumed to be non-owning otherwise.

4.3.2 Ranking Statements
The intraprocedural analysis orders the constraints so that the

more precise constraints are satisfied first. Below is the ranking
used, starting with the most precise:

1. Constant constraints including allocations, deletions, over-
written variables, and variables entering and exiting a scope.

2. Equality flow constraints with a single output, except those
generated by uncommon control flow paths. These arise
from join nodes and assignments without choice. Among
flow nodes generated from joins, those with a lower fan-in
are considered more precise.

3. Constraints generated by assignments with choice.

4. Flow constraints arising from joins on uncommon control
flow paths like loop continues and breaks.

5. Constraints generated by loads and stores involving indirect
pointer accesses.

4.3.3 Handling Inaccuracies in Methods
The order in which methods are analyzed is dictated by the call

graph, since it is not possible to find the ownership signature of a

method without the signature of its callees. This creates a problem
because errors in summarizing a callee can propagate interproce-
durally to all its callers.

There are three kinds of constraints that are of particular concern:
the constraint that indirectly accessed pointers may not hold own-
ership, the constraint that undefined functions cannot have owning
parameters and return values, and the constraint that fields in the
sender object must honor their ownership type before and after ex-
ternal invocations. The last constraint is overly restrictive because
most external calls do not access member fields in the sender ob-
ject.

Our solution is to analyze the program with more relaxed ver-
sions of the above constraints. We relax the constraints to allow
indirectly accessed pointers and parameters to undefined functions
to optionally hold ownerships. These constraints are represented
by 0-1 inequalities. A sender’s member fields need not obey the
field signatures across external method invocations. At the end of
the analysis, we walk through each method, tighten the constraints,
and report the rest of the violations.

5. EXPERIMENTAL RESULTS
Clouseau, the memory leak detector we implemented, incorpo-

rates all the techniques described in this paper. Clouseau is im-
plemented as a program analysis pass in the SUIF2 compiler in-
frastructure. Besides finding potential errors in a given program,
Clouseau also generates inferred ownership signatures of each pro-
cedure, class method and class member field. These signatures help
users understand the warnings generated. Clouseau is sound within
the safe subset of C and C++ presented in Section 3.5, meaning
that it will report all possible errors in the program. Some of these
warnings pertain to incorrect usage of the ownership model, which
is the main objective of the tool. Some of these warnings are due to
limitations of our analysis or the use of schemes other than object
ownership in managing memory.

To evaluate the utility of the Clouseau system, we applied
Clouseau to six large C and C++ applications. Our tool reported
warnings on all the applications. We examined the warnings to
determine if they correspond to errors in the program. We found
errors in every package and 134 potentially serious memory leaks
and double deletes were found in total.

5.1 The Application Programs
The application suite in this experiment consists of three C pack-

ages and three C++ packages. The C programs in the suite are
widely used: GNU binutils, which are a set of object file genera-
tion and transformation tools, openssh, a set of secure shell clients
and servers, and the apache web server. The C++ applications are
under active development: licq, an internet chat client, Pi3Web, a
web server written in C++, and the SUIF2 compiler’s base package.
The first two are available from http://sourceforge.net
and SUIF2 is available at http://suif.stanford.edu.

Many of these packages contain a number of executable pro-
grams and libraries, as shown in Figure 4. The figure also includes
other statistics on each package including the number of source
files, the number of functions, and the lines of code (LOC), as mea-
sured by counting unique non-blank lines of preprocessed source
code. In total, our tool analyzed about 390,000 lines of code in the
experiment. We also report the size of the largest program in each
package and the time ownership inference takes for that program.

The measurements were taken on a 2 GHz Pentium 4 machine
with 2 GBytes of memory. These numbers do not include the time
required by the front end, linker, and preprocessing transforma-
tions. It took 1.2 minutes to analyze 71K lines of C code and

Largest Exe
Package Exe Lib Files Func LOC LOC Time
binutils 14 4 196 2928 147K 71K 69
openssh 11 2 132 1040 38K 23K 13
apache 9 27 166 2047 66K 43K 29
licq 1 0 31 2673 28K 28K 240
Pi3Web 48 14 173 2050 40K 25K 85
SUIF2 12 30 203 8272 71K 55K 528
TOTAL 95 77 901 19010 390K

Figure 4: Application characteristics: number of executables,
libraries, files, functions, lines of code, lines of code in the
largest executable and its ownership analysis time in seconds.

8.8 minutes to analyze 55K lines of C++ code. C++ program anal-
ysis is slower because of the extra intra-class analysis used to de-
termine member field ownerships, the inclusion of member fields
in the analysis, and the larger call graphs generated by class hier-
archy analysis, We have not optimized our implementation, as the
analysis was fast enough for experimentation.

5.2 The C Packages
Clouseau generated a total of 1529 warnings for the three C pro-

grams in the suite. The warnings are separated into three classes:
violations of intraprocedural constraints, violations of interproce-
dural constraints, and escaping violations. Escaping violations re-
fer to possible transfers of ownership to pointers stored in struc-
tures, arrays or indirectly accessed variables. While these warn-
ings tell the users which data structures in the program may hold
owning pointers, they leave the user with much of the burden of
determining whether any of these pointers leak. Users are not ex-
pected to examine the escaping warnings, so we only examined the
non-escaping warnings to find program errors.

Only 362 of the warnings are non-escaping; 82 are intraproce-
dural and 280 are interprocedural. We found altogether 85 errors,
as shown in Figure 5. The error-to-warning ratio is 32% for in-
traprocedural violations and 21% for interprocedural violations.
We found the method signatures generated by Clouseau helpful
with our examination of the interprocedural warnings.

Intraprocedural Interprocedural
Package Reported Bugs Reported Bugs Escapes
binutils 79 26 200 40 727
openssh 1 0 73 18 408
apache 2 0 7 1 32
Total 82 26 280 59 1167

Figure 5: Reported warnings and identified errors on C appli-
cations

Many of the errors in binutils and openssh are due to missing
object deletions along abnormal control flow paths, such as early
procedure returns or loop breaks. Some procedures return both
pointers to newly allocated and statically allocated memory. Oc-
casionally, deletes are missing in the normal execution of a loop.
In openssh, almost all memory allocation and deletion routines are
wrapped by other procedures, thus interprocedural analysis is a pre-
requisite to finding any leaks in the program. The apache web
server illustrates an interesting scenario. Clouseau reported only 9
warnings, only one of which was found to be an error. Examination

of these warnings quickly revealed that apache manages its memory
using a region-based scheme. While Clouseau does not understand
region-based management, the few warnings generated succeed in
helping users understand how the program manages memory.

5.3 The C++ Packages
Clouseau offers more functionality in finding leaks in C++ pro-

grams. By assuming that member fields are either owning or non-
owning at public method boundaries, Clouseau can find errors asso-
ciated with leaks stored in class member fields. For C++, Clouseau
generates two more categories of warnings than those for C: vi-
olations of receivers’ member field ownerships and violations of
senders’ member field ownerships in external invocations. The lat-
ter, as discussed in Section 4.3.3, are most likely caused by limita-
tions in our model and not real errors in the program. The break-
down of each category of warnings and errors is shown in Figure 6.

We analyzed the receiver-field, intraprocedural and interproce-
dural violations to look for memory leaks and double deletes. We
found two common suspicious practices, which we classify as mi-
nor errors. First, many classes with owning member fields do not
have their own copy constructors and copy operators; the default
implementations are incorrect because copying owning fields will
create multiple owners to the same object. Even if copy construc-
tors and copy operators are not used in the current code, they should
be properly defined in case they are used in the future. Second, 578
of the 864 interprocedural warnings reported for SUIF2 are caused
by leaks that occur just before the program finds an assertion vio-
lation and aborts. We have implemented a simple interprocedural
analysis that can catch these cases and suppress the generation of
such errors if desired. Counting the minor errors, 770 (69%) of the
1111 examined warnings lead to errors. Ignoring the minor errors
and their warnings, 49 (13%) of the 390 examined warnings lead to
errors.

This experiment shows that the object ownership model is used
in all the three C++ applications. Ignoring the minor default
copy constructors and copy operators problem, classes with owning
member fields have no leaks in Pi3web and licq. In the SUIF2 com-
piler, however, some classes leak owning members because either
the class destructor does not delete them or the default destructor is
used. We also identified two serious errors where an object can be
deleted twice. Double deletes are even more significant than mem-
ory leaks because they can cause memory corruption and undefined
behavior.

5.4 Discussion
Our experience in working with real-life applications leads to

a number of interesting observations. First, the field and method
signatures generated by Clouseau help explain to the programmer
the cause of the warnings. It has been found that good explanations
are required for effective error detection tools[6]. Our generated
method interfaces allow users to reason about the methods one at
a time. Even when the generated method interfaces are erroneous,
programmers can often easily detect such errors.

Second, automatic tools are not affected by some of the problems
that can mislead programmers. One error we found in binutils was
caused by a misnomer. The function bfd alloc does not return
ownership of newly allocated objects despite its name; giving no
credence to function names, Clouseau easily derived this fact from
the implementation. As another example, some of the leaks in licq
are generated by macros that expand to include early loop exits that
cause memory leaks. It is difficult for a programmer, without look-
ing at the preprocessed code, to find these leaks. These examples

Receiver-Field Intraprocedural Interprocedural Sender-Field
Package Reported Major Minor Reported Major Reported Major Minor Escapes
Pi3Web 38 0 33 10 0 46 4 0 134 36
licq 42 0 40 33 14 114 16 0 231 622
SUIF2 91 8 70 33 5 704 2 578 523 886
Total 171 8 143 76 19 864 22 578 888 1544

Figure 6: Reported warnings on C++ applications, with identified major and minor errors

suggest that tools can find new program errors even in well-audited
code.

Third, without using or needing a specification, Clouseau can
only find inconsistencies in programs and cannot say, for sure,
which statements in the program are wrong. Inconsistencies are
often interesting to programmers, even if they do not correspond
to erroneous memory usage. In some code in binutils, a pro-
grammer called the wrong function by mistake. The function hap-
pened to have an ownership signature different from the intended
function. By examining the ownership inconsistency reported by
Clouseau, we were able to discover an otherwise hard-to-find error.
Some of the inconsistencies are due to unusual programming styles.
Clouseau found a suspicious case where a pointer to the middle of
an object is stored as an owning pointer. The pointer happens to
be suitably decremented to point to the beginning of the object be-
fore it is freed. Identification of such unconventional pointer usage
might be of interest to a programmer.

Fourth, detecting program errors is but the first step towards fix-
ing the errors. Fixing memory leaks, especially when errors are
caused by poorly designed interfaces, can be hard. A few of the
leaks we found appear to have been discovered before, based on
comments in the source files near the reported problems. They have
not been fixed presumably because of the complexity involved. In
fact, after we reported one such interface problem in binutils, a
developer introduced another bug in an attempt to fix the error. In-
cidentally this bug would have been caught by Clouseau had it been
run after applying the fix.

While Clouseau successfully helped identify a number of er-
rors in large complex programs, our experiment also revealed some
weaknesses in our current system and suggests several interesting
avenues for future work. It would be useful and possible to reduce
the number of false warnings among the receiver-field, intrapro-
cedural and interprocedural violations. We found that predicates
are often used to indicate whether pointers own their objects, thus
adding path sensitivity will reduce the number of false warnings.
There are many receiver-field violations due to the idiom of using a
combination of get and set to replace an owning member field.
Relaxing the ownership model and improving the analysis to han-
dle such cases would be useful.

More importantly, we need to help programmers find leaks
among the escaping violations. We found that C and C++ programs
often pass pointers to pointers as parameters to simulate a pass-by-
reference semantics. Better handling of such pointers would be
useful. We also need to improve the handling of objects in contain-
ers. Our investigation suggests that containers can be handled by
having the user specify the relationships between containers and
their elements in the code and augmenting the static analysis de-
scribed in this paper. Details of this work are the subject of another
paper.

6. RELATED WORK
This research builds upon previous work on linear types, object

ownership models and capability-based type systems. The design
of our system is driven mainly by our goal to build a tool that can
be applied to the large existing C and C++ code bases.

Ownership model. Our work is based on a notion of ownership
that has been adopted by practitioners and shares many similar-
ities with the concepts embodied in auto ptr and LCLint[13].
Owning pointers help find memory leaks, but do not eliminate ref-
erences to dangling pointers. Our model adds optional ownership
transfer in assignment, allows arbitrary aliases, and includes an ob-
ject ownership invariant at public method boundaries. We have for-
malized the ownership model and developed an algorithm that can
automatically infer polymorphic ownership signatures of the meth-
ods and fields in C and C++ programs.

Clarke et al. proposed a stricter model of ownership known as
ownership type[9, 21]. The basic notion is that an object may own
another subobject. An object is always owned by the same object;
furthermore, ownership types enforce object encapsulation, that is,
objects can only be referenced through owner pointers. This notion
of encapsulation restricts access to the subobjects, thus allowing
one to reason about a subobject by only considering methods in
the object. This has been used in preventing data races and dead-
locks[2]. Various extensions have been proposed to allow restricted
forms of access to objects without going through the owner[2, 7, 8].
AliasJava uses a more flexible ownership type system[1]. While it
is still not possible to change the ownership of an object, an owner
can grant permission to access an object to another object, and
aliases can be temporarily created to owned objects. More recent
work has enabled the expression of parameterized containers and
their iterators while enforcing encapsulation properties[3].

Since ownership can be passed around in our system, our work
also bears some similarities with linear types. Because we allow
non-owning pointers, assignments may or may not transfer owner-
ship; the option is captured by a constraint, and the system is type-
safe as long as the constraints derived are satisfiable. Strict linear
types require the right-hand-side pointer be nullified. Language ex-
tensions have been proposed to allow read-only aliases[26]. Boy-
land’s alias burying allows aliases but the aliases are all nullified
when one of them is read[4]. He proposed an inference algo-
rithm that requires annotations be placed on procedural interfaces.
Alias types have been proposed to allow limited forms of aliasing
by specifying the expected data memory shape properties[24, 27].
Linear types have been applied to track resource usage[14] and ver-
ify the correctness of region-based memory management[10, 15,
16, 17, 18, 25]. Finally, Dor et al. propose checking for mem-
ory leaks using a sophisticated pointer shape analysis[11]; unfor-
tunately the scalability of this powerful technique has not been
demonstrated.

Automatic Inference. Our ownership inference is fully auto-
matic and quite powerful. Automatic interprocedural annotation
inferencing is also used in other software understanding tools in-

cluding Lackwit[23], Ajax[22] and AliasJava[1]. While all these
tools support polymorphism, or context sensitivity, our algorithm
is also flow-sensitive unlike the first two of these. Moreover, we
do not know of any other inference algorithms that allow choice
in ownership transfer in assignment statements and method invoca-
tions. This idea is also useful for solving other resource manage-
ment problems.

Experimental Results. This paper includes experimental results
demonstrating the success of our system in finding errors in large
C and C++ programs. Very few experimental results have been
reported in previous work involving ownership-based models. We
are able to apply our system to large programs because the system
assumes a flexible model, requires no user intervention, and has an
efficient flow-sensitive and context-sensitive algorithm.

The GNU C++ compiler has a -WeffC++ flag which warns of
violations of Meyers’s effective C++ rules, which include some
rules to minimize memory leaks. The tool uses mainly syntactic
analysis and tends to generate many false warnings. Fully auto-
matic tools like PREfix[6] and Metal[12, 19] have been found to be
effective in finding program errors. Although unsound and lacking
a notion of object invariants, these tools have been shown to find
many errors in large systems. Handling false warnings is a major
issue in both of these systems. Experience with the PREfix system
shows that it is important to prioritize the warnings so programmers
can focus on the most likely errors. Metal statistically identifies
common coding practice in a program and classifies deviations as
errors.

We also prioritize warnings based on their likelihood of repre-
senting real errors. Moreover, because errors in our system appear
as consistency violations, it is particularly important to attribute the
errors to their source correctly. We do so by satisfying the more pre-
cise constraints first. Our experience with Clouseau confirms that
a good constraint ordering is important to generating useful error
reports.

7. CONCLUSIONS
This paper formalizes a practical object ownership model for

managing memory. In this model, every object is pointed to by
one and only one owning pointer. The owning pointer holds the
exclusive right and obligation to either delete the object or to trans-
fer the right to another owning pointer. In addition, a pointer-typed
class member field either always or never owns its pointee at public
method boundaries.

This model can be used to analyze existing code “as is” because
it supports the normal semantics of assignments and method in-
vocations. Namely, assignments may transfer ownership from the
source to the destination variable, but are not required to do so. We
capture the choice of ownership transfer with 0-1 integer linear in-
equalities. In addition, method interfaces also use 0-1 integer linear
inequalities to capture the ownership relationships among parame-
ters in a method. This representation supports a powerful form of
polymorphism.

We have developed a flow-sensitive and context-sensitive algo-
rithm that automatically infers field and method ownership signa-
tures in C and C++ programs and identifies statements violating
the model as errors. We have optimized the algorithm by using a
sparse graph representation and a custom constraint solver to take
advantage of the highly-structured 0-1 ownership constraints.

Our memory detection tool, Clouseau, is designed to help users
isolate errors in a program. It tries to satisfy the more precise con-
straints first to prevent errors associated with the less precise con-
straints from propagating. Warnings are ranked so as to focus users
on warnings most likely to lead to errors. Finally, the member field

ownerships and method signatures that the tool generates give the
context of reported constraint violations and minimize the code in-
spection required to identify bugs from the warnings.

Our experimental results suggest that our algorithm is effective
and efficient. It finds errors in each of the large software systems we
experimented with, which include web servers, secure shell clients
and servers, a chat client, object code tools and the SUIF compiler.
The algorithm is practical; it analyzed over 50K lines of C++ code
in about 9 minutes on a 2 GHz PC.

8. REFERENCES
[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias

annotations for program understanding. In Proceedings of
OOPSLA 2002: Object-Oriented Programming Systems,
Languages and Applications, pages 311–330, November
2002.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
Proceedings of OOPSLA 2002: Object-Oriented
Programming Systems, Languages and Applications, pages
211–230, November 2002.

[3] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for
object encapsulation. In Proceedings of the Thirtieth Annual
ACM Symposium on Principles of Programming Languages,
pages 213–223, January 2003.

[4] J. Boyland. Alias burying: Unique variables without
destructive reads. Software–Practice and Experience,
31(6):533–553, May 2001.

[5] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson.
Practical improvements to the construction and destruction
of static single assignment form. Software–Practice and
Experience, 28(8):859–881, July 1998.

[6] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors. Software–Practice
and Experience, 30(7):775–802, June 2000.

[7] D. Clarke. An object calculus with ownership and
containment. In The Eighth International Workshop on
Foundations of Object-Oriented Languages, January 2001.

[8] D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In Proceedings of
OOPSLA 2002: Object-Oriented Programming Systems,
Languages and Applications, pages 292–310, November
2002.

[9] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Proceedings of OOPSLA ’98:
Object-Oriented Programming Systems, Languages and
Applications, pages 48–64, October 1998.

[10] K. Crary, D. Walker, and G. Morrisett. Typed memory
management in a calculus of capabilities. In Proceedings of
the Twenty-sixth Annual ACM Symposium on Principles of
Programming Languages, pages 262–272, January 1999.

[11] N. Dor, M. Rodeh, and S. Sagiv. Checking cleanness in
linked lists. In Proceedings of the Static Analysis
Symposium, pages 115–134, July 2000.

[12] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In Proceedings of Eighteenth ACM
Symposium on Operating System Principles, pages 57–72,
October 2001.

[13] D. Evans. Static detection of dynamic memory errors. In
Proceedings of the SIGPLAN ’96 Conference on
Programming Language Design and Implementation, pages
44–53, May 1996.

[14] M. Fähndrich and R. DeLine. Adoption and focus: Practical
linear types for imperative programming. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, pages 13–24, June
2002.

[15] D. Gay and A. Aiken. Memory management with explicit
regions. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and
Implementation, pages 313–323, May 1998.

[16] D. Gay and A. Aiken. Language support for regions. In
Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, pages
70–80, May 2001.

[17] D. K. Gifford and J. M. Lucassen. Integrating functional and
imperative programming. In ACM Conference on Lisp and
Functional Programming, pages 28–38, August 1986.

[18] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in cyclone. In
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages
282–293, June 2002.

[19] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, pages
69–82, June 2002.

[20] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the Winter
USENIX Conference, pages 125–136, December 1992.

[21] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
The 12th European Conference on Object-Oriented
Programming, pages 158–185, July 1998.

[22] R. O’Callahan. Generalized Aliasing as a Basis for Program
Analysis Tools. PhD thesis, Carnegie Mellon University,
November 2000.

[23] R. O’Callahan and D. Jackson. Lackwit: A program
understanding tool based on type inference. In Proceedings
of the 19th International Conference on Software
Engineering, pages 338–348, May 1997.

[24] F. Smith, D. Walker, and G. Morrisett. Alias types. In
Proceedings of the Ninth European Symposium on
Programming, pages 366–381, April 2000.

[25] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, February 1997.

[26] P. Wadler. Linear types can change the world. In M. Broy
and C. B. Jones, editors, IFIP TC 2 Working Conference on
Programming Concepts and Methods, pages 561–581, April
1990.

[27] D. Walker and G. Morrisett. Alias types for recursive data
structures. Lecture Notes in Computer Science,
2071:177–206, 2001.

[28] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94,
November 1994.

APPENDIX

A. STATIC TYPING RULES
This appendix includes all the static typing rules in our owner-

ship type system. Figure 7 gives the typing rules for all statements
in a method, other than those involving method invocations. Fig-
ure 8 gives the typing rules for method definitions and invocations.

Figure 9 gives the syntax and the rules of the static judgments. A
program P is well-typed, P ` �, if it has a well-typed constructor,
destructor, methods and fields for each class in the program. A set
of constraints C is good, ` C , if it is consistent. We define the
restriction C↓~α to be the resulting constraint after projecting away
all variables but those in ~α.

(STMT-NULL)
D ` z : ρz ρz

′

fresh C
′ = C∧{ρz=0}

B ;D ;C ` z = NULL ⇒ D [z 7→ρz
′];C ′

(STMT-ASGN)
D ` y : ρy, z : ρz

ρz
′, ρy

′

fresh C
′ = C∧{ρz=0}∧{ρy=ρy

′ + ρz
′}

B ;D ;C ` z = y ⇒ D [z 7→ρz
′, y 7→ρy

′];C ′

(STMT-FLDASGN)
B ` this : c D ` y : ρy, this.f : ρf ρf

′, ρy
′

fresh

C
′ = C∧{ρf = 0}∧{ρy=ρy

′ + ρf
′} f ∈ F(c)

B ;D ;C ` this.f = y ⇒ D [this.f 7→ρf
′, y 7→ρy

′];C ′

(STMT-FLDUSE)
B ` this : c D ` this.f : ρf , z : ρz ρz

′, ρf
′

fresh

C
′ = C∧{ρz = 0}∧{ρf=ρf

′ + ρz
′} f ∈ F(c)

B ;D ;C ` z = this.f ⇒ D [z7→ρz
′, this.f 7→ρf

′];C ′

(STMT-COMP)
B ;D ;C ` s1 ⇒ D1;C1 B ;D1; C1 ` s2 ⇒ D2;C2

B ;D ;C ` s1·s2 ⇒ D2;C2

(STMT-IF)
B ;D ;C ` s1 ⇒ D1;C1 B ;D ;C ` s2 ⇒ D2;C2

C
′ = C1∧C2∧{D1(x) = D2(x)|x ∈ Dom(D)}

B ;D ;C ` if ∼ then s1 else s2 ⇒ D1;C
′

(STMT-WHILE)
B ;D ;C ` s ⇒ D1;C1

C
′ = C∧C1∧{D(x) = D1(x)|x ∈ Dom(D)}

B ;D ;C ` while ∼ do s ⇒ D ;C ′

Figure 7: Typing rules for statements

[METHOD-GOOD]
MOTc(m) = [ας ~αx ~αf ~αf

′ αr
′;Cm]

~f=F(c) ρr, ~ρz fresh this : c, ~x : ~tx , r : tr ,~z : ~tz ; this : ας , ~x : ~αx, this. ~f : ~αf , r : ρr,~z : ~ρz; true ` s ⇒ D ;C

D ` this : ρς
′, ~x : ~ρx

′, this. ~f : ~ρf
′, r : ρr

′,~z : ~ρz
′

C
′ = {ρr=0}∧{ ~ρz=0}∧C∧{ρς

′=0}∧{ ~ρx
′=0}∧{ ~ρf

′= ~αf
′}∧{ρr

′=αr
′}∧{ ~ρz

′=0} ` Cm Cm ≤ C
′↓ας ~αx ~αf ~αf

′ αr
′

` m(this : c, ~x : ~tx) : tr {scope r : tr ,~z : ~tz {s · return r}}

[CONSTR-GOOD]

MOTc(new) = [~αx ~αf
′ αr

′;Cm] ~f=F(c) ρς , ~ρf , ~ρz fresh

this : c, ~x : ~tx ,~z : ~tz ; this : ρς , ~x : ~αx, this. ~f : ~ρf ,~z : ~ρz; true ` s ⇒ D ;C D ` this : ρς
′, ~x : ~ρx

′, this. ~f : ~ρf
′,~z : ~ρz

′

C
′ = {ρς=1}∧{ ~ρf=0}∧{ ~ρz=0}∧C∧{ρς

′=αr
′=1}∧{ ~ρx

′=0}∧{ ~ρf
′= ~αf

′}∧{ ~ρz
′=0} ` Cm Cm ≤ C

′↓ ~αx ~αf
′ αr

′

` newc(~x : ~tx) : c {scope this : c,~z : ~tz {s· return this}}

[DESTR-GOOD]

MOTc(delete) = [ας ~αf ;Cm] ~f=F(c) ~ρz fresh this : c,~z : ~tz ; this : ας , this. ~f : ~αf ,~z : ~ρz; true ` s ⇒ D ;C

D ` this : ρς
′, this. ~f : ~ρf

′,~z : ~ρz
′

C
′ = {ας=1}∧{ ~ρz=0}∧C∧{ρς

′=1}∧{ ~ρf
′=0}∧{ ~ρz

′=0} ` Cm Cm ≤ C
′↓ας ~αf

` deletec(this : c) {scope ~z : ~tz {s}}

[STMT-INTCALL]

B ` this : c ~f=F(c) D ` this : ρς , ~x : ~ρx, this. ~f : ~ρf , r : ρr

ρς
′, ~ρx

′, ~ρf
′, ρr

′

fresh MOTc(m) = [ας ~αx ~αf ~αf
′ αr

′;Cm] Cs = Cm[σς ~σx ~σf ~σf
′ σr

′

fresh/ας ~αx ~αf ~αf
′ αr

′]
C

′ = C∧{ρr=0}∧Cs∧{ρς=ρς
′ + σς}∧{ ~ρx= ~σx}∧{ ~ρx

′=0}∧{ ~ρf= ~σf}∧{ ~σf
′= ~ρf

′}∧{σr
′=ρr

′}

B ;D ;C ` r = this.m(~x) ⇒ D [this 7→ρς
′, ~x 7→ ~ρx

′, this. ~f 7→ ~ρf
′, r 7→ρr

′]; C ′

[STMT-EXTCALL]

B ` y : c, this : c1
~f=F(c) ~f1=F(c1) D ` y : ρς , ~x : ~ρx, this. ~f1 : ~ρf1

, r : ρr

ρς
′, ~ρx

′ρr
′

fresh MOTc(m) = [ας ~αx ~αf ~αf
′ αr

′;Cm] Cs = Cm[σς ~σx ~σf ~σf
′ σr

′

fresh/ας ~αx ~αf ~αf
′ αr

′]

C
′ = C∧{ρr=0}∧{ ~ρf1

=FOTc1 (~f1)}∧Cs∧{ρς=ρς
′ + σς}∧{ ~ρx= ~σx}∧{ ~ρx

′=0}∧{ ~σf= ~σf
′=FOTc(~f)}∧{σr

′=ρr
′}

B ;D ;C ` r = y .m(~x) ⇒ D [y 7→ρς
′, ~x 7→ ~ρx

′, r 7→ρr
′];C ′

[STMT-CONSTR]

B ` this : c1
~f=F(c) ~f1=F(c1)

D ` ~x : ~ρx, this. ~f1 : ~ρf1
, r : ρr ~ρx

′, ρr
′

fresh MOTc(new) = [~αx ~αf
′ αr

′;Cm] Cs = Cm[~σx ~σf
′ σr

′

fresh/ ~αx ~αf
′ αr

′]

C
′ = C∧{ρr=0}∧{ ~ρf1

=FOTc1(
~f1)}∧Cs∧{ ~ρx= ~σx}∧{ ~ρx

′=0}∧{ ~σf
′=FOTc(~f)}∧{σr

′=ρr
′}

B ;D ;C ` r = newc(~x) ⇒ D [~x 7→ ~ρx
′, r 7→ρr

′]; C ′

[STMT-DESTR]

B ` y : c, this : c1
~f=F(c) ~f1=F(c1) D ` y : ρς , this. ~f1 : ~ρf1

, ρς
′

fresh MOTc(delete) = [ας ~αf ;Cm]

Cs = Cm[σς ~σf fresh/ας ~αf] C
′ = C∧{ ~ρf1

=FOTc1(
~f1)}∧Cs∧{ρς=ρς

′ + σς}∧{ ~σf=FOTc(~f)}

B ;D ;C ` y .deletec() ⇒ D [y 7→ρς
′];C ′

Figure 8: Good method definition and invocation typing rules

[PROGRAM-GOOD]
∀c ∈ CL(P), ∀f ∈ F(c),m ∈ M(c)

FOTc(f) = [ρ; ρ = κ] κ ∈ {0, 1} ` m(this : c, ~x : ~tx) : tr {...} ` newc(~x : ~tx) : c {...} ` deletec(this : c) {...}

P ` �

[CONSTRAINT-GOOD]
C 0 false

` C

Figure 9: Well-typed programs

