
Ž .Parallel Computing 24 1998 445–475

Maximizing parallelism and minimizing
synchronization with affine partitions 1

Amy W. Lim), Monica S. Lam 2

Computer Systems Laboratory, Stanford UniÕersity, Stanford, CA 94305, USA

Received 10 April 1997; revised 2 September 1997

Abstract

This paper presents an algorithm to find the optimal affine partitions that maximize the degree
of parallelism and minimize the degree of synchronization in programs with arbitrary loop
nestings and affine data accesses. The problem is formulated without the use of imprecise data
dependence abstractions such as data dependence vectors. The algorithm presented subsumes
previously proposed loop transformation algorithms that are based on unimodular transformations,
loop distribution, fusion, scaling, reindexing, and statement reordering. q 1998 Elsevier Science
B.V. All rights reserved.

Keywords: Affine partitions; Affine transforms; Parallelizing compilers; Multiprocessors; Parallelism; Coarse
granularity; Synchronization

1. Introduction

Experience with parallel applications on multiprocessors suggests that achieving high
performance on such machines is nontrivial. Not only do we need to find sufficient
parallelism in a program, but it is also important that we minimize the synchronization
and communication overheads in the parallelized program. In fact, it is not uncommon
to find parallel programs than run even slower than their serial counterpart due to the
overhead of parallel execution. It is therefore important to increase the granularity of

) Corresponding author. E-mail: aimee@cs.stanford.edu
1 A preliminary version of this paper appears in the 24th Annual ACM SIGPLAN-SIGACT Symposium on

w xPrinciples of Programming Languages, Paris, France, Jan 1997 26 . This research is supported in part by the
Air Force Material Command and ARPA, contract F30602-95-C-0098, and an NSF Young Investigator award.

2 E-mail: lam@cs.stanford.edu

0167-8191r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII S0167-8191 98 00021-0

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475446

parallelism to reduce the frequency of synchronization and minimize the amount of data
communicated between processors.

This paper presents a new program transformation model for the domain of sequential
programs with arbitrary nestings and sequences of loops, whose array indices and loop
bounds are affine expressions of outer loop indices. In this model, every instruction is
given its own affine partition that divides the instances of the instruction across the
processors or across time stages. More specifically, instances of each instruction are
identified by the loop index values of their surrounding loops. The affine partitions map
the loop indices to either virtual processor numbers or iteration numbers in a sequential
loop. This model is general enough to represent all possible combinations of loop

Ž . Žpermutation also known as interchange , reversal, skewing, reindexing also known as
.alignment or index set shifting , distribution, fusion, scaling, and statement reordering.

We have developed an algorithm that finds the optimal affine partitions to maximize
the degree of parallelism while minimizing the degree of synchronization. We say that a

Ž k .loop has k degrees of parallelism if O n operations can execute in parallel, where n is
Ž k .the number of iterations. Similarly, a loop has k degrees of synchronization if O n

barrier synchronizations are needed in the parallel program. Our algorithm maximizes
the degree of parallelism with successively greater degrees of synchronization. The
algorithm can be used to find all the parallelism in a program at the coarsest granularity,
or just find the parallelism up to the degree needed to exploit a particular hardware
configuration. The algorithm uses the array index functions directly, and is therefore
more powerful than previous algorithms based on imprecise abstractions such as
distance and direction vectors. Once the affine partitions are found, simple algorithms

w xbased on Fourier–Motzkin elimination 1 can be used to generate the corresponding
Ž .parallel program expressed in an SPMD Single Program Multiple Data style.

In Section 2, we provide background for this work by describing several major
approaches to program transformations. We then explain the different forms of paral-
lelism in Section 3, present our problem statement in Section 4, and give an overview of
our algorithm in Section 5. In Section 6, we formally define our program representation
and affine partition mappings. We present algorithms for solving several subproblems in
Section 7 to 9 that can be combined to find the maximum degree of coarse-grain
parallelism. Finally, we conclude in Section 11.

2. Background

Much research has been performed in the area of parallelization and communication
minimization. In the following, we outline four major approaches and contrast our
proposal with previous models.

2.1. Loop transformations

Many loop transformations have been shown to improve parallelism and data locality
w xin programs 2 , examples of which include loop permutation, reversal, skewing,

w xreindexing, distribution and fusion 3–8 .

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 447

Parallelization algorithms based on this approach translate sequential loop nests into
semantically equivalent sequential loop nests, with the goal that the resulting code
contains one or more parallelizable loops at the outermost possible nesting levels. Outer
parallel loops are preferred over inner parallel loops as synchronization barriers are
introduced before and after the execution of each parallel loop. Because it leaves the
mapping of iterations to processors unspecified, this approach cannot be used to
minimize the interprocessor communication across parallel loops.

The legality of the individual loop transformations is defined using the abstraction of
distance and direction Õectors. These vectors capture the common conditions, but not all
the conditions, under which the transformations can be applied. It is easy to determine if
a loop transformation on its own improves the parallelism of a program, but finding the
optimal combination of transforms remains an open question. Current approaches tend to
use either heuristics or choose a pre-defined sequence of transforms that have been

w xfound to be useful for some programs 8–11 .

2.2. Systolic array synthesis techniques

Program transformations have also been influenced by the techniques developed for
w xsynthesizing systolic algorithms 12,13 . Intended to be mapped directly onto VLSI

implementations, systolic designs are limited to the domain of computations specified by
a set of recurrence equations. The regularity of a computation is directly translated into a
hardware design, with the functional units typically arranged as an array with a regular
interconnect. A systolic algorithm specifies precisely when and where each operation is
performed, as well as when and how each data item is communicated between
processors.

The synthesis of systolic algorithms has been formulated as a choice in mapping the
index set representing the computation onto a space–time domain using geometric

Ž k .transformations. An O n computation is represented by a k-dimensional index set; the
dependences between the computations are represented as a set of constant distances
between pairs of indices. Computations in this domain can be executed in parallel on an

Ž ky1.array with O n processors. This is achieved by mapping the k-dimensional space
onto 1 dimension in time and ky1 dimensions in space. Projecting the dependence
vectors onto the time axis must yield positive vectors in order to satisfy the dependences
in the program; projecting the dependence vectors onto the processor subspace yields the
interprocessor communication pattern.

2.3. Unimodular transformations

A geometric model similar to that used in systolic array synthesis has also been
applied to transforms of perfectly nested loops. In the unimodular loop transformation

w xframework 14,15 , an n-deep loop nest is modeled as an n-dimensional space, where
each iteration is treated as an atomic unit. The iterations are executed in lexicographical
order in a sequential execution. The dependences in the loop are abstracted by a set of

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475448

distance and direction vectors. By applying a unimodular transform to the original
iteration space to produce a new iteration space, a sequential loop is transformed into
another loop. A transformation is legal as long as the dependence vectors in the original
iteration space remains lexicographically positive in the transformed space.

Since any combination of loop permutation, skewing and reversal can be represented
by a unimodular transformation, the problem of finding the best combination of these
loop transforms reduces to finding the best unimodular transform. Algorithms have been
developed to transform a sequential loop nest into a semantically equivalent one with
better locality. The problem of finding coarse-grain parallelism in a loop nest is
translated to finding a sequential loop nest such that the outermost possible loop is
parallelizable.

2.4. Affine scheduling

Whereas unimodular transforms apply only to perfectly nested loops, affine schedul-
w xing 16–18 applies to arbitrary nestings and sequences of loops. Whereas unimodular

transforms unify loop permutation, skewing and reversal, affine scheduling unifies
unimodular transforms with loop distribution, fusion, reindexing and scaling.

In the affine scheduling model, each instruction is given its own affine mapping,
which maps the instances of the instruction identified by their loop indices to their
execution times. Unlike the source-to-source and unimodular transformation models that
transform a sequential code into another equivalent sequential code, the parallelism is
explicit in the affine scheduling model. Operations assigned the same time are executed
in parallel. Execution time in this model may have multiple dimensions; the coordinates
in the time domain are executed sequentially in lexicographical order.

Feautrier has developed an algorithm that finds a piecewise affine schedule to
w xminimize the overall execution time of a program 19,20 . Heuristics based on paramet-

ric integer programming are used to minimize the dimensionality of time. This problem
formulation specifies when, but not where, each instruction is executed. Communication

w xis not modeled at all and must be handled by postpass techniques 21 . Moreover, it is
nontrivial to translate the piecewise affine schedules into parallel code and the resulting
code can be quite complicated.

Attempts have also been made to derive affine schedules that expose coarse-grain
parallelism. Darte proposed an algorithm for detecting permutable loops for the re-

w xstricted domain of perfectly nested loops 22 . In contrast, Kelly and Pugh’s algorithm
finds one dimension of parallelism for programs with arbitrary nestings and sequences

w xof loops 23 . Their repertoire of program transforms include loop permutations and
reversals, but not loop skewing. The exclusion of loop skewing enables them to
enumerate all the possible transformation choices and select the one with the lowest
estimated communication cost.

2.5. Affine processor and time partitioning

We present a new model that uses affine mappings to explicitly partition computation
across processors. This model makes it easy to develop algorithms that maximize

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 449

parallelism and minimize synchronization simultaneously. Moreover, this model lends
itself to a straightforward translation from the original code to SPMD programs.

Our model also uses affine expressions to partition computation into sequential time
stages. However, unlike affine scheduling, which totally orders all operations, we only
need to specify the ordering between operations nested within the same sequential loops.
This is significant because while the multi-dimensional time representation captures the
timing relationships between operations within the same loop nesting well, it is not
expressive enough to fully represent the general program structure containing arbitrarily
nested sequences of loops.

In summary, the affine partitioning model enables the design of powerful transforma-
tion algorithms as it provides a unified notation for describing combinations of unimodu-
lar transforms, loop scaling, reindexing, distribution and fusion. Unlike the affine
scheduling model, mappings from computation to processors are explicit in our model,
thus allowing algorithms to optimize for parallelism and communication together.
Finally, although systolic arrays also map computation to processors directly, our model
is much more general. Systolic array synthesis techniques are applicable to simple
computation domains characterized by uniform recurrence equations. In contrast, our
algorithm can handle arbitrary nestings and sequences of loops, handle arbitrary affine
array index expressions accurately without having to ‘uniformize’ them, optimize
operations within an iteration individually, and finally produce schedules with multi-di-
mensional time.

3. Forms of parallelism

We introduce three examples in Fig. 1 to illustrate the different forms of parallelism.
Ž .Using the iteration space representation, the point at coordinate l ,l represents the1 2

² :operation in iteration l ,l and the arrows represent data dependences between1 2

operations. For the different parallelization schemes, each thick line represents a barrier
synchronization, and each gray box groups together computations that are assigned to
the same processor.

Example 1 illustrates the difference between fine-grain and coarse-grain parallelism.
There are many possible fine-grain parallelization schemes for this example, one of
which is to execute each row of the iterations in parallel. A coarse-grain parallelization
scheme, on the other hand, would specify that the different columns of iterations can
execute in parallel. Both schemes expose the same degree of parallelism, but the latter
allows the processors to run at their own pace without having to execute the same rows

Ž .in lock step. Whereas O n synchronizations are needed to enforce the fine-grain
scheme, no synchronization is needed in the coarse-grain version.

Example 2 illustrates that it is not always possible to find synchronization-free
parallelism—parallelism that requires no synchronization. Here, the only form of
loop-level parallelism is to execute one row at a time. A barrier is needed to ensure that
all processors have finished their assigned iterations, before any can proceed to the next
row.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475450

l1

l2

l1 l1

l2

l1

l2

l1

l2

l1

l2

iteration space

different

l2

l1

l2

l1

l 2

outer sequential

Example 1

fine-grain coarse-grain

Example 2 Example 3

wavefront pipeline

parallelization
schemes

and data
dependences

for l1 = 1 to n do

for l2 = 1 to n do

a[l1, l2] = a[l1- 1, l2] +

a[l1-1, n - l2+1];

for l1 = 1 to n do

for l2 = 1 to n do

a[l1, l2] = a[l1-1, l2];

for l1 = 1 to n do

for l2 = 1 to n do

a[l1, l2] = a[l1-1, l2] +

a[l1-1, l2-1];

Fig. 1. Examples 1, 2, 3: iteration space, data dependences and parallelization schemes.

Like Example 2, Example 3 does not have any synchronization-free parallelism.
However, unlike Example 2, there is a choice in parallelization schemes. One choice is
to waÕefront the computation. For example, we can have the processors execute
iterations along a diagonal in parallel, as shown in the figure. A better choice is to
pipeline the computation. For example, by assigning each row to a processor, each
processor can proceed with the computation at a given column as soon as its neighbor-
ing processor that is assigned the row below finishes executing its assigned computation
at the same column. Pipelining has many benefits over wavefronting: barriers are
reduced to point-to-point synchronizations, processors need not work on the same
wavefront at the same time, the SPMD code is simpler, and finally the processors tend
to have better data locality.

When a program has multiple degrees of parallelism, we say that different degrees of
parallelism are at the same nesting level if and only if they require the same degree of
synchronization. For example, a 2-deep loop nest whose iterations are completely
independent has two degrees of parallelism. Both degrees of parallelism are at the same
level despite the original nesting structure, and they require no synchronization. On the
other hand, when one degree of parallelism in a loop nest requires more synchronization
than another, we say that the former is nested within the latter. An example of nested
levels of parallelism is as follows:

for l =1 to n do0

for l =1 to n do1

for l =1 to n do2

a[l ,l ,l]=a[l ,l y1,l]+a[l ,l y1,nyl +1];0 1 2 0 1 2 0 1 2

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 451

Each iteration of the outermost loop l performs the same computation as Example 20

on a disjoint set of data. Loop l is trivially parallelizable, allowing n processors to0

execute in parallel without any synchronization at all. If, however, we wish to keep n2

processors busy, we can assign each iteration of l to a set of n processors. Each set of0

n processors must participate in n barrier synchronizations, one for each iteration of the
middle loop l . This example illustrates that degrees of parallelism may require different1

amounts of synchronization, and we prefer to exploit outer levels of parallelism so as to
minimize synchronization.

4. Problem statement

The domain of our algorithm is the set of sequential programs with arbitrary nestings
and sequences of loops, whose array indices and loop bounds are affine expressions of
outer loop indices or loop-invariant variables. Constructs such as conditionals and
non-affine accesses are handled by treating them conservatively. Our goal is to derive

Ž .the optimal affine processor or space and time partitions for each instruction to
maximize the degree of loop-level and pipelined parallelism with the minimum degree
of synchronization.

From these affine partition mappings, a straightforward algorithm based on Fourier–
w x ŽMotzkin elimination 1 can be used to generate the desired SPMD Single Program

.Multiple Data code. In this paper, the SPMD code we show assumes each processor
partition is mapped to a physical processor. To generate code for a specific number of
processors, we can simply combine multiple parallel threads and assign them to the
same processor. The processor assignment algorithm uses fine-grain parallelism only if
there is insufficient coarser-grain parallelism to keep all the processors occupied.
Additional considerations such as data locality are used to guide the assignment among
threads belonging to the same level of granularity. To maximize the flexibility in
processor assignment, it is therefore important for the parallelizer to locate all the
degrees of parallelism at each level of granularity. For example, blocking, a processor
assignment scheme demonstrated to improve locality, cannot be applied to loop nests
with only one degree of parallelism.

5. Overview of the algorithm

We decompose the overall problem of finding the maximum degree of parallelism
into several subproblems: how to maximize the degree of parallelism that requires 0,
Ž . Ž .O 1 , and O n amounts of synchronization, respectively, where n is the number of

iterations in a loop. By solving each of these problems in turn, the algorithm finds
successively more degrees of parallelism at higher synchronization costs. These steps are

Ž 2 . Ž 3.then repeated to find parallelism requiring O n , O n , . . . synchronization until
sufficient parallelism is found to occupy all of the available hardware.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475452

The subproblem of maximizing synchronization-free parallelism is formulated as
dividing the operations into the largest number of independent partitions. More specifi-
cally, our algorithm finds an affine partition mapping for each instruction that maxi-
mizes the degree of parallelism in each instruction. The affine mappings are subject to a
set of space-partition constraints, which ensures that processors executing operations in
different partitions need not synchronize with each other.

Ž .The next subproblem is to find parallelism with O 1 synchronizations. That is, the
number of synchronizations performed must not depend on the number of iterations in a
loop. Our parallelization scheme may introduce as many synchronizations as there are
instructions in a program, which is constant for a given program. Our algorithm divides
instructions into a sequence of stages. We use the algorithm above to locate synchroniza-
tion-free parallelism in each stage and introduce barrier synchronizations at the end of
each parallelized stage.

Ž .Finally, to find parallelism with O n synchronizations, we find an affine time-parti-
tion mapping for each instruction. The affine mappings are subject to time-partition
constraints, which ensure that data dependences can be satisfied by executing the
partitions sequentially. The objective is to find mappings that yield maximum paral-
lelism among operations within each of the time partitions.

The space-partition and time-partition constraints are similar in many ways and are
amenable to the same kinds of techniques. We use the affine form of the Farkas Lemma
w x19 to transform the constraints into systems of linear inequalities. The problem of
finding a partition mapping that gives the maximum degree of loop-level and pipelined
parallelism while satisfying the space-partition or time-partition constraints reduces to
finding the null space of a system of equations. The desired affine partition mapping can
be found easily with a set of simple algorithms.

6. Definitions

™ ™Throughout the paper, we use y to denote the ith element of the vector y , and y toi i:j
™ ™Žrepresent the subvector from the ith to the jth element of vector y . y is the emptyi:j

.vector if i) j .

6.1. Program and data dependences

In the following, we describe our representation for a program and its data depen-
dences.

² :Definition 6.1. A sequential program is represented as Ps SS ,d , DD,FF,v,h , where
Ø SS is the set of instructions. An instruction is an indivisible unit such as a simple

arithmetic operation on program variables. Instruction s appears lexically before
instruction sX if and only if s- sX.p

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 453

Ø d is the depth, or the number of surrounding loops, of instruction s.s ™ ™ ™ ™Ž .Ø DD i sD iqd is an affine expression derived from the loop bounds such that i is as s s ™ ™ 3Ž .valid loop index for instruction s, if and only if DD i G0.s™ ™ ™Ž .Ø FF i sF iq f is the affine array index expression in the r th array reference toz sr z sr z sr

array z in instruction s.
Ø v is true if and only if the r th array reference to array z in instruction s is a writez sr

operation.
Ø h X is the number of common loops shared by instructions s and sX.ss

The access patterns in a program define the constraints of program transformations. The
notion of data dependences is well understood. Informally, there is a data dependence
from an access function FF to another access function FF X, if and only if some instance
of FF uses a location that is subsequently used by FF X, and one of the accesses is a write
operation. A data dependence set of a program contains all pairs of data-dependent
access functions in the program.

Definition 6.2. We define $ to be the ‘lexicographically less than’ operator for
™ ™ ™X² : Xprogram Ps SS ,d , DD,FF,v,h such that i$ i if and only if iteration i of instruc-ss™X Xtion s is executed before iteration i of s in P. That is,

™ X XX °hss Xi s i n s- s mshX X1:h 1:h p ss™ ™ ™™ s s s sX Xm ~X Xi$ i ' L i ,i sŽ .Ess ss ™ ™X X¢ms0 Xi s i n i 0Fm-h1:m 1:m mq1 ss

Definition 6.3. The data dependence set of a program Ps-SS ,d , DD,FF,v,h) is

² :X X X XRs FF ,FF v k vŽ .z sr z s r z sr z s r½
™ ™ ™ ™X XXd ds s < Xn ' igZZ ,i gZZ i$ iž /ssž

™ ™ ™X
X Xn FF i yFF i s0Ž . Ž .ž /z sr z s r

™ ™
n DD i G0Ž .ž s

™ ™X
XnDD i G0Ž . /s 5/

When known, the actual values of loop bounds are used for better accuracy.

3 Constant loop bounds can be represented as symbolic variables to avoid the introduction of large
� 4 � 4coefficients in the linear systems. For example, 10000y l G0 can be represented as ny l G0 with the1 1

value for variable n set to 10,000 before code generation.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475454

6.2. Affine partition mappings

In this section, we define affine partition mappings and a few properties used in our
algorithm.

Definition 6.4. An m-dimensional affine partition mapping for instruction s in program
™ ™ ™Ž .P is an m-dimensional affine expression F i sC iqc , which maps an instance ofs s s™ 4instruction s, indexed by i, to an m-element vector. An m-dimensional affine partition

w xmapping for a program P is Fs F ,F , . . .F , where k is the number of instructions1 2 k

in P. 5

™ ™Ž .Definition 6.5. The rank of an affine partition mapping for an instruction s, F i sC is s
™qc , is the rank of the coefficient matrix C . The rank of an affine partition mapping Fs s

for a program is the maximum of the ranks of the affine partition mappings for its
instructions.

Definition 6.6. Two one-dimensional affine partition mappings for instruction s,
™ ™ X ™ X™ XŽ . Ž .F y sC yqc and F y sC yqc , are linearly dependent if and only if thes s s s s s

coefficient matrices C and CX are linearly dependent. Two one-dimensional affines s

partition mappings F and F X for program P are linearly dependent if and only if Fs

and F X are linearly dependent for all instructions s in P.s

7. Synchronization-free parallelism

We first consider the problem of finding parallelism that requires no synchronization.
This is formulated as dividing the operations of a program into partitions, such that
dependent operations are placed in the same partition. By assigning each partition to a
different processor, no synchronization is needed between processors. In this paper, we
seek a partitioning that can be described by an affine mapping for each instruction.

In the following, we first define the necessary and sufficient constraints for an affine
partition mapping to be synchronization-free. We next describe an algorithm that solves
the constraints and finds a partition mapping that has the highest rank among all the
possible solutions. We will show that the rank of the partition mapping corresponds to
the degree of synchronization-free parallelism. Therefore, our algorithm finds the
maximum degree of synchronization-free parallelism.

4 Symbolic constants are incorporated into our algorithm by treating them like loop variables.
5 The coefficients of the affine partition mapping are rational numbers. Each dimension or row of a

partition mapping for a program may be scaled to have integral values in the code generation phase.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 455

7.1. Space-partition constraints

Ž .Definition 7.1. Space-partition constraints Let R be the data dependence set for
² :program Ps SS ,d , DD,FF,v,h . An affine space-partition mapping F for P is syn-

chronization-free if and only if 6

™ ™ ™ ™ ™ ™X XXd ds s² :X X X; FF ,FF g R ,igZZ ,i gZZ s.t. DD i G0nDD i G0Ž . Ž .z sr z s r s s

™ ™ ™ ™ ™X X
X X XnFF i yFF i s0, F i yF i s0 1Ž .Ž . Ž . Ž . Ž .z sr z s r s s

™ ™ ™ ™ ™ ™ ™ ™Ž . Ž . Ž .Let DD i sD iqd , FF i sF iq f , and F i sC iqc . Each data depen-s s s z sr z sr z sr s s s
² :X Xdence, FF , FF gR, imposes the following constraints on each row of a synchro-z sr z s r

X w Ž .xX Xnization-free mapping for instructions s and s , Xs yC C c ycs s s s

™ ™ ™™ ™y y y™; y s.t . G G 0n H s0, X s0 2Ž .
1 1 1

where

™™ D 0 d ™ ™s si™
X X X Xy' , Gs , Hs F yF f y fž /z sr z s r z sr z s r™ ™X

X XiÕ 0 D ds s

7.2. Linearizing the constraints

We first convert the space-partition constraints into a set of linear equations as
follows:

Ž .Algorithm 7.1. Convert constraints in the form of Eq. 2 into a system of equations.

Step 1. Simplify the constraints by successively removing variables in y using the
™ ™y 7Ž .equations H s0 in Eq. 2 . We use a variant of the Gaussian elimination
1

algorithm. We first select an equation and express one of its variable y , an element ofi

6 For synchronization-free parallelism, it is not necessary to distinguish between the directions of the data
dependences in R. The redundancy is included in the constraints to emphasize the similarity with the
definition in Section 9. It is a matter of simple optimization to eliminate the redundant constraints.

X™ ™y7 Pairs of inequalities in G G0 can sometimes be reduced to an equation, which can then be
1

eliminated.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475456

™y, in terms of the other variables in the equation. Then, we substitute all occurrences of
y with the expression. The result is of the form:i

X X™ ™™y yX X™; y s.t. G G0, XE s0 3Ž .
1 1

™X ™where vector y has fewer variables than y. E is constructed by applying the
substitutions to an identity matrix and removing the substituted columns afterwards.

Ž .Step 2. Reduce Eq. 3 to a set of linear equations, using the Affine Form of the Farkas
w xLemma 19 .

Ž .Lemma 7.1. Affine form of the Farkas Lemma

™ ™y™ ™Ž .Let x y be an affine expression of y and G G0 define a non-empty polyhedron.
1

™ ™y™ ™; y s.t. G G0, x y G0 if and only ifŽ .
1

™ ™TyG™ w x w xx y ' l PPP l l with l PPP l l G0Ž . 1 m 0 1 m 00 PPP 0 1 1

where m is the number of rows in matrix G. The positiÕe constants l , whose existencek

is asserted by Farkas Lemma, are called Farkas multipliers.

Ž . Ž . Ž .We rewrite the constraint in Eq. 3 as Eqs. 4 and 5 :

X X™ ™™y yX X™; y s.t. G G0, XE G0 4Ž .
1 1

X X™ ™™y yX X™; y s.t. G G0, yXE G0 5Ž .
1 1

Ž .Let m be the number of rows in G. Applying the Farkas Lemma to Eq. 4 ,

X XX™ ™ ™Ty yGw x w xXE s l PPP l l n l PPP l l G0 6Ž .1 m 0 1 m 00 PPP 0 11 1
™XŽ .Since Eq. 6 holds for all y ,

X ™TGw x w xXEs l PPP l l n l PPP l l G0 7Ž .1 m 0 1 m 00 PPP 0 1

Ž .The unknowns in the new constraints 7 are l , PPP ,l , and the coefficients in X.0 m

We are interested only in the coefficients in X, so we apply Fourier-Motzkin elimination

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 457

w x1 to eliminate all the Farkas multipliers to obtain a set of constraints in the form of
™ XŽ .X AG0. Renaming yX in Eq. 5 as X and applying the Farkas Lemma and

™XFourier-Motzkin elimination as above, we get another set of constraints, X AG0'XA
™

F0. Combining the two sets of constraints, we get a set of linear constraints on X:

™ ™T TXAs0 or A X s0 8Ž .

7.3. SolÕing space-partition constraints

Now that the constraints are expressed as equations, we can use techniques from
linear algebra to find the desirable partition mappings.

Algorithm 7.2. Find a highest-ranked synchronization-free affine partition mapping for
² :program Ps SS ,d , DD,FF,v,h .

Step 1. From each data dependence in R, construct the space-partition constraints on a
Ž .one-dimensional partition mapping in the form of Eq. 2 .

Step 2. Apply Algorithm 7.1 to rewrite all the constraints as a system of linear equations
™™ ™in the form of Axs0, where x is a vector of variables representing all the unknown

coefficients in C , C , . . . , and constant terms c , c , . . . of the affine partition mapping.1 2 1 2

Step 3. Since the rank of an affine partition mapping is not dependent on the values any
™™of its constant terms c, we eliminate all the unknowns c from Axs0 using the same

™X X™elimination technique in Step 1 of Algorithm 7.1. Let the simplified system be A x s0,
™Xwhere x represents only the unknown coefficients in C.

™X X™Step 4. Find the solutions to A x s0, expressed as BB, a set of basis vectors spanning
the null space of AX.

Step 5. Derive one row of the desired affine partition mapping from each basis vector in
BB. The coefficients in C are specified directly by the basis vector, and all the constant

™™terms c are derived from the coefficients in C using Axs0.

Note that the basis vectors in BB, representing the coefficients of the affine mapping
for all instructions, are linearly independent. However, the rows in the affine mappings
for each instruction are not necessarily linearly independent. A mapping may have more
rows than its rank and the dimensionality of the processor space may be larger than the
degree of parallelism. Thus, while this algorithm finds all the parallelism, a further step
must be taken to map only the partitions with computations to physical processors.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475458

7.4. Parallelism with no synchronization

Algorithm 7.3. Find all the degrees of synchronization-free parallelism for program P.

Step 1. Apply Algorithm 7.2 to P to get a highest-ranked synchronization-free affine
partition mapping F .

Step 2. Generate SPMD code such that each processor executes a partition of F , and all
instructions within a partition are executed in their sequential order in P.

Theorem 7.2. Algorithm 7.3 finds the maximum degree of synchronization-free paral-
lelism.

Ž r .Proof. A synchronization-free partition mapping with rank r creates O n independent
partitions which, when mapped to different processors, produce r degrees of synchro-
nization-free parallelism. Thus, a synchronization-free affine partition mapping with the
highest rank, as found in Algorithm 7.3, has the highest degree of parallelism. The
parallel program is correct because the computations on different processors are
independent of each other, and operations executed on each processor follow the original
sequential order.I

It is straightforward to generate the SPMD code with the synchronization-free
parallelism found by Algorithm 7.3. Our code generation algorithm is based on Ancourt

w xand Irigoin’s polyhedron-scanning code generation technique 24 ; details and examples
w xcan be found in Ref. 25 .

To ensure that Algorithm 7.2 can be used as a step in finding the maximum degrees
of parallelism with and without synchronizations, we have the following lemma:

()Lemma 7.3. The two-step approach of 1 finding synchronization-free partitions and
()2 finding the maximum degree of parallelism in each of the partitions maximizes the
degree of parallelism in a program.

Proof. Mapping operations from different synchronization-free partitions to the same
processor can only decrease the degree of parallelism in a program.I

7.5. Example

To illustrate our algorithm, we introduce a slightly more complicated example in Fig.
2. We show four iterations from each of the loops. Each iteration of the innermost loop
is represented by a pair of nodes, with the white node representing an operation of

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 459

Fig. 2. An example with a subset of operations in iteration space representation.

instruction 1 and the black representing an operation of instruction 2. The arrows
represent dependences between the operations. It is easy to see from the figure that the
best way to parallelize this code is to assign each chain of alternating black and white
nodes to a processor. We show step-by-step how Algorithm 7.2 systematically derives
the affine partition mappings that describe this optimal parallelization scheme.

Step 1. Construct the space-partition constraints. The iteration space for either of the
instructions in the loop body is:

l l l ™ ™1 1 1
DD sD qd)0½ 5ž /l l l2 2 2

where

T ™ T1 y1 0 0 w xDs , ds y1 100y1 100
0 0 1 y1

² :The data dependence set R contains two pairs of access functions: FF , FF andb11 b21
² :FF , FF wherea11 a21

l l l™1 1 11 0 y1FF sF q f s qb11 b11 b11ž /l l 0 1 l 02 2 2

X X Xl l l™1 1 11 0FF sF q f sX X Xb21 b21 b21ž /l l 0 1 l2 2 2

l l l™1 1 11 0FF sF q f sa11 a11 a11ž /l l 0 1 l2 2 2

X X Xl l l™1 1 11 0 0FF sF q f s qX X Xa21 a21 a21ž /l l 0 1 l y12 2 2

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475460

² :We derive from the data dependent pair FF , FF the constraintb11 b21

™ ™ ™ ™™ ™ ™ ™D 0 d y y y™; y s.t. G0n F yF f y f s0, X s0b11 b21 b11 b21 1™ 1 1 10 D d
9Ž .

™ X X Tw x w xwhere y' l l l l and X s yC C c yc .1 2 1 2 1 1 2 2 1
² :Similarly, we derive from FF , FF the constrainta11 a21

™ ™ ™ ™™ ™ ™ ™D 0 d y y y™; y s.t. G0n F yF f y f s0, X s0a11 a21 a11 a21 2™ 1 1 10 D d
10Ž .

w xwhere X s yC C c yc .2 1 2 2 1

Ž . Ž .Step 2. Apply Algorithm 7.1 to rewrite constraints 9 and 10 as a system of linear
Ž .equations. For constraint 9 , eliminate variables from X using1

l1

l2™™ ™ ™ ™y 1 0 y1 0 y1 XF yF f y f s0' s0lb11 b21 b11 b21 10 1 0 y1 01 Xl2

1

The algorithm substitutes l with lX q1, then l with lX . The simplified constraint is1 1 2 2

X Xl l1 1™X X X X X;l ,l s.t. G G0, X E s0 11Ž .l l1 2 12 2

1 1

where
T

1 y1 0 0 1 y1 0 0
XG s ,0 0 1 y1 0 0 1 y1

0 99 y1 100 y1 100 y1 100
T

1 0 1 0 0
Es 0 1 0 1 0

1 0 0 0 1

Ž .Apply the Farkas Lemma to Eq. 11 and eliminate the Farkas multipliers l’s and
8 Ž .m’s using Fourier-Motzkin elimination. The Farkas Lemma rewrites Eq. 11 as

w x XX Es l PPP l l G n l , . . . ,l G01 1 8 0 0 8

w x XyX Es m PPP m m G n m , . . . ,m G01 1 8 0 0 g

8 Each equation is normalized using the GCD of its coefficients.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 461

The final system of equations with the Farkas multipliers eliminated is

100 100 2 2 2 2
1 100 1 2 99 100 ™

X s0 12Ž .99 99 1 1 1 11

1 100 1 2 99 100
1 1 1 1 1 1

Ž .For constraint 10 , applying similar steps above yields

1 100 1 2 99 100
1 1 99 99 99 99 ™

X s0 13Ž .1 100 1 2 99 1002

2 2 100 100 100 100
1 1 1 1 1 1

Ž .Step 3. Eliminate all the constant terms c from the space-partition constraints 12 and
Ž . Ž .13 . Using the first column in Eq. 12 , we substitute c yc with2 1

Tw x w xy100 y1 y99 y1 yC C1 2

The resulting constraints on the coefficients in C are
T

0 y98 y98 y98 y98 y99 0 y99 y98 y1 0
™T99 0 1 98 99 0 0 98 98 98 98 w xyC C s01 20 y98 y98 y98 y98 y98 1 y98 y97 0 1

99 0 1 98 99 1 1 99 99 99 99

Step 4. Find the solution space to the constraints derived in Step 3. The solution space is
™ Ž .the null space of the matrix, which is spanned by the vector ys y1 1 1 y1 .

™Step 5. Construct a synchronization-free partition mapping from y . The coefficients in C
™are given by y and the corresponding c yc is 1. Setting c to 0, we get c sy1 and2 1 2 1

the space-partition mapping F with F s l y l y1 and F s lX y lX .1 1 2 2 1 2

The SPMD code generated from the space-partition mapping F is as follows:

(p denotes the processor ’s id)
if (p=y99) then

a[1, 100]=a[1, 100]+b[0, 100];
if (y98FpF99) then

if (1FpF99) then
b[p, 1]=a[p, 0])b[p, 1];

for l =max(1, 1+p) to min(100, 99+p)1

a[l , l yp]=a[l , l yp]+b[l y1, l yp];1 1 1 1 1 1

b[l , l yp+1]=a[l , l yp])b[l , l yp+1];1 1 1 1 1 1

if (y98FpF0) then
a[100+p, 100]=a[100+p, 100]+b[99+p, 100];

if (p=100) then
b[100, 1]=a[100, 0])b[100, 1];

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475462

()8. Parallelism with O 1 synchronizations

To find parallelism that requires only a constant amount of synchronization, we use a
program dependence graph, where all instances of the same instruction are represented
by a single node.

² :Definition 8.1. Let R be the data dependence set for program Ps SS ,d , DD,FF,v,h .
Ž .The dependence graph for P is Gs V, E , where node y gV represents instruction s,s

² : X ² X :X X Xand y ,y gE if and only if 'z, r, r s.t. FF , FF gR.s s z sr z s r

()Lemma 8.1. All nodes in a strongly connected component SCC of a program
dependence graph must share at least one common surrounding loop nest.

Proof. If two instructions do not share a common surrounding loop nest, all instances of
one instruction must be executed before any of the other instructions in the original
program. Dependences between the two instructions must be unidirectional, and the
instructions cannot belong to the same SCC of a program dependence graph.I

Ž .Algorithm 8.1. Find all the degrees of parallelism requiring O 1 synchronizations for a
program.

Step 1. Construct the program dependence graph and partition the instructions into
SCCs.

Step 2. Apply Algorithm 7.3 to each SCC to find all of its synchronization-free
parallelism.

Step 3. Generate code to execute the SCC in a topological order, and introduce a barrier
at the end of each parallelized SCC.

() ()Lemma 8.2. The two-step approach of 1 partitioning a program into SCCs and 2
finding the maximum degree of parallelism in each SCC maximizes the degree of
parallelism in a program.

Proof. Executing SCCs in parallel can only increase parallelism by a constant factor and
does not affect the degree of parallelism. As dependences within individual SCCs are
only a subset of those in the entire program, the SCCs cannot have less degrees of
parallelism than the entire program.I

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 463

Theorem 8.3. Algorithm 8.1 finds the maximum degree of coarse-grain parallelism that
()uses at most O 1 synchronizations.

Proof. First, executing SCCs in topological order clearly honors all the dependences
between operations in different SCCs. Second, the algorithm introduces, for a given
program, only a constant number of synchronizations, which is bounded by the number
of instructions in a program and not dependent on the number of iterations in a loop.
Third, by Lemma 8.2, considering strongly connected components independently does
not reduce the degree of parallelism in a program. Any parallelization scheme that
assigns data dependent operations in an SCC to different processors requires at least
Ž .O n synchronizations, where n is the number of iterations in a loop. Thus, finding the

maximum degree of synchronization-free parallelism in each SCC must maximize the
Ž .parallelism that requires no more than O 1 synchronizations.I

9. Parallelism within sequential loops

We now consider those programs that have no synchronization-free parallelism and
whose program dependence graph consists of only one strongly connected component.
By Lemma 8.1, there must exist an outermost loop that surrounds all the instructions in

Ž .such a program; by Theorem 8.3, any available parallelism must require at least O n
synchronizations, where n is the number of iterations in a loop. We can express the
parallelized version of the computation as an outermost loop, where multiple processors
cooperate to execute an iteration in parallel, and the processors synchronize with each
other at the end of each iteration to ensure that the iterations are executed in sequence.
We refer to such loops as outer sequential loops.

Our goal is to partition the operations so that operations within each iteration of the
outer sequential loop are of the largest degree of parallelism. More specifically, we wish
to find an affine mapping from the original loop index values of each operation to the
iteration number of the new loop, so that it is legal to execute the loop sequentially, and
operations within each iteration have the largest degree of parallelism.

In the following, we first define a legal affine partition mapping such that executing
the partitions sequentially does not violate any data dependence constraints. Next, we
calculate the maximally independent solutions to the constraints. We show that when
there is more than one solution, there exists parallelism within one degree of synchro-
nization. A linear combination of these solutions would yield an affine mapping that
exposes all the degrees of parallelism with only one degree of synchronization.
Furthermore, by making the maximally independent solutions rows of an affine map-
ping, we exploit all the possible degrees of pipeline parallelism without reducing the
overall degree of parallelism.

9.1. Time-partition constraints

We wish to partition the operations into iterations such that executing the iterations
sequentially does not violate any data dependences. In other words, if operation u

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475464

depends on operation y , u must be executed either in the same iteration as y , or in a
later iteration than y . Thus, the time-partition constraints are simply a more relaxed
version of the space-partition constraints.

Ž .Definition 9.1. Time-partition constraints Let R be the data dependence set for
² :program Ps SS ,d , DD,FF,v,h . A one-dimensional affine partition mapping F for P

is legal if and only if

™ ™X Xd ds s² :X X; FF ,FF gR ,igZZ ,i gZZz sr z s r

™ ™ ™ ™ ™ ™X X
X Xs.t. i$ i nDD i G0nDD i G0Ž . Ž .ss s s

™ ™ ™ ™ ™X X
X X XnFF i yFF i s0, F i yF i G0 14Ž .Ž . Ž . Ž . Ž .z sr z s r s s

Ž .Using Definition 6.2, we can rewrite Eq. 14 as a set of linear time-partition constraints:

™ ™ ™™X XXd d ms s² :X X X X� 4; FF ,FF gR ,igZZ ,i gZZ ;mg 0, . . . ,h s.t. L i ,iŽ .z sr z s r ss ss

™ ™ ™ ™ ™ ™ ™ ™ ™X X X
X X X XnDD i G0nDD i G0nFF i yFF i s0, F i yF i G0Ž . Ž . Ž . Ž . Ž . Ž .s s z sr z s r s s

15Ž .

There exists at least one legal, affine partition mapping for an outer sequential loop;
the time-partition constraints can be trivially satisfied by making the iteration number of
the outermost loop the partition number. Furthermore, it is clearly possible to order the
operations in each partition such that executing the partitions sequentially honors all the
data dependences in the loop.

9.2. SolÕing time-partition constraints

We use the concept of maximally independent partition mappings to describe the
space of all the solutions to the time-partition constraints and show how we find all the
possible legal partitions.

� 1Definition 9.2. A set of legal one-dimensional affine partition mappings BBs F ,
2 n4 ² :F , . . . , F for program Ps SS ,d , DD,FF,v,h is said to be maximally independent

if and only if the set is minimal, and any legal one-dimensional affine partition mapping
F can be expressed as an affine combination of the mappings in BB. That is, for all
legal F

'k , . . . ,k gQ;sgSS'agQ1 n

™ ™ ™ ™1 2 nF y sk F y qk F y q PPPqk F y qaŽ . Ž . Ž . Ž .s 1 s 2 s n s

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 465

Algorithm 9.1. Find a set of legal, maximally independent, affine partition mappings for
an outer sequential loop.

Step 1. Using the same steps in Algorithm 7.1, we rewrite each system of constraints
™™Ž .from Eq. 15 as AxG0. Whether two affine partition mappings are linearly indepen-

dent depends only on their coefficient matrices C and CX . Thus, we eliminate all thes s™™constant terms c from AxG0 using Fourier-Motzkin elimination. Let the simplified
™™ ™system be A x G0 where x represents the coefficients in C , C , . . .1 1 1 1 2

™™Step 2. Find a maximal set of linearly independent solutions to A x G0 using1 1™
Algorithm A. In brief, the algorithm introduces a set of new variables b, one for each
row of A , such that1

™x™ ™ ™ ™1™ w xA x G0' A yI s0, bG0 16Ž .1 1 1 m=m ™
b

Ž .where the size of matrix A is m=n. It is obvious that any solution to Eq. 16 must1

also be a solution to

™x ™1w xA yI s0 17Ž .1 m=m ™
b

™Ž . Ž .Conversely, solutions to Eq. 17 are solutions to Eq. 16 if the values for b are
Ž .non-negative. One basis for the solutions to Eq. 17 consists of the rows of matrix

w T x 9Vs I ; A . Algorithm A applies elementary row operations to V to maximizen=n 1 ™
the number of rows that have non-negative values for b. Furthermore, the set of rows

™
with non-negative b is guaranteed to be linearly independent.

™Step 3. From each solution of x , found in Step 2, derive one affine partition mapping.1
™The coefficients in C are given directly by x , and all the constant terms c are derived1™™using AxG0.

()9.3. Parallelism with O n synchronizations

Our objective is to create affine partitions, each of which contains as much paral-
lelism as possible. The parallelism available in a partition is determined by the data

9 Elementary row operations include interchanging two rows, scaling a row, and adding a scalar multiple of
one row to another.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475466

dependences between operations within a partition. By placing a pair of data-dependent
operations in different time partitions, a partition mapping dismisses the dependence
between the operations from the consideration of parallelism within a partition. Thus, it
is generally desirable that the affine time-partition mappings dismiss as many depen-
dences as possible so as to maximize the parallelism within a partition. For the domain
of affine mappings and the objective of maximizing the degree of parallelism, it is
sufficient to seek affine mappings that dismiss the maximal set of linear time-partition
constraints. In the following, we define the notion of dismissing a constraint more
formally, propose an algorithm and show that the algorithm is optimal.

Definition 9.3. A legal affine partition mapping dismisses the linear time–partition
² :X Xconstraint imposed by FF , FF gR at level m if and only ifz sr z s r

™ ™ ™™ ™ ™ ™X X XXd d ms s X X; igZZ ,i gZZ s.t . L i ,i nDD i G0nDD iŽ . Ž .Ž .ss s s

™ ™ ™ ™ ™ ™X X
X X XG0nFF i yFF i s0, F i yF i)0 18Ž .Ž . Ž . Ž . Ž .z sr z s r s s

Ž .Algorithm 9.2. Find all the degrees of parallelism requiring O n synchronizations for
an outer sequential loop P.

Step 1. Apply Algorithm 9.1 to program P to get a set of maximally independent
partition mappings BB. Partition the operations in time using FsÝ i F i. GenerateF g BB

the code to execute the time partitions in sequential order, and introduce a barrier at the
end of each partition.

Step 2. Apply Algorithm 8.1 to each time partition of F to find all the degrees of
Ž .parallelism requiring at most O 1 synchronizations.

To show that Algorithm 9.2 finds all the parallelism requiring one degree of synchro-
nization, we introduce the following lemmas.

Lemma 9.1. Any positiÕe linear combination of legal affine partition mappings is also a
legal affine partition mapping.

Proof. Combinations of affine partition mappings that satisfy the time-partition con-
Ž .straint 14 must also satisfy the same constraints.I

Lemma 9.2. There exists a legal one-dimensional affine time-partition mapping that
dismisses all the linear time-partition constraints that can be dismissed by any legal
one-dimensional mapping.

Proof. Given any two legal one-dimensional affine time-partition mappings, F and F X,
which dismiss different linear time-partition constraints s and s X, respectively. We can

ˆ X Xalways construct a legal mapping FsFqF that dismisses sjs .I

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 467

Lemma 9.3. If two legal, one-dimensional affine partition mappings for an outer
sequential loop are linearly dependent, they yield the same degree of parallelism at
eÕery leÕel of granularity.

Proof. Let F and F X be two legal, one-dimensional and linearly dependent affine
partition mappings for an outer sequential loop P with m instructions. We show below
that F yields at least the same degree of parallelism as F X, and by showing the converse
with a symmetric argument, we prove that F and F X must have the same degree of
parallelism.

�Each partition in F consists of instances of different instructions, Gs g , . . . , g ,1 m

where g is a set of instances of instruction s . As F and F X are linearly dependent, fori i

each set g , there exists a partition in F X that contains all the operations in the set. Thus,i

F X maps operations in G to at most m different partitions.
We subdivide operations in G into subpartitions according to their partition numbers

in F X. Since F X is a legal mapping, it is legal to execute the subpartitions sequentially in
order of their partition numbers. We can exploit all the parallelism in each subpartition
by introducing at most my 1 barriers between each subpartition. Since an

Ž .outer sequential loop needs at least O n synchronizations to exploit any degree
of parallelism, F yields at least the same degree of parallelism, at every level of
granularity.I

� 1 2 n4Lemma 9.4. Let BBs F ,F , . . . ,F be a set of maximally independent legal affine
partition mappings for an outer sequential loop P. The one-dimensional affine mapping
FsÝn F i is a legal partition mapping for P, and the partitions F create haÕe theis1

largest degree of parallelism.

Proof. Let F X be a legal one-dimensional affine partition mapping that dismisses the
Ž . Xmaximal set of linear time-partition constraints Lemma 9.2 . F must therefore yield

the maximum degree of parallelism among all one-dimensional legal mappings. Given a
� 1 2 n4set of legal, maximally independent, partition mappings BBs F ,F , . . . ,F ,

'k , . . . ,k G0;sgSS'agQ1 n

X ™ ™ ™ ™1 2 nF y sk F y qk F y q PPPqk F y qaŽ . Ž . Ž . Ž .s 1 s 2 s n s

n Ž .Let msmax k .is1 i

n n
X™ ™ ™ ™ ™i iF̂ y sF y q myk F y 'm F y qa 'mF y qaŽ .Ž . Ž . Ž . Ž . Ž .Ž .Ý Ýs s i s s s s s

is1 is1

Ž . ŽŽ . i. Ž .Since myk is non-negative, myk F is a legal partition mapping Lemma 9.1 .i i
ˆ X ˆAs F is a combination of F and other legal mappings, F must be legal and dismisses

ˆthe same maximal set of linear constraints. By Lemma 9.3, since F and F are linearly
dependent, they have the same maximal degree of parallelism.I

Theorem 9.5. Algorithm 9.2 finds the maximum degree of coarse-grain parallelism
with at most one degree of synchronization in an outer sequential loop P.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475468

Proof. First, it is obvious from Definition 9.1 that executing the time partitions
sequentially honor all the dependences between operations in different partitions.

Ž .Second, both Steps 1 and 2 of the algorithm introduce at most O n synchronizations.
By Lemma 9.4, Step 1 of Algorithm 9.2 finds a legal mapping that creates partitions
with the largest degree of parallelism in P. By Theorem 8.3, Step 2 finds all the

Ž .parallelism that uses at most O 1 synchronizations in each partition. Therefore,
Algorithm 9.2 finds the maximum degree of parallelism that requires at most one degree
of synchronization.I

9.4. Exploiting pipeline parallelism

When there are several linearly independent solutions to the time-partition con-
straints, the partition mapping chosen in Algorithm 9.2 is but one of the many equivalent
ways of exposing the maximum degree of parallelism in a program. Our preferred
approach is, in fact, not to use the mapping in Algorithm 9.2, but to pipeline the
computation instead. We show below that pipelining can achieve the same degrees of
parallelism, with the advantage of replacing barriers with point-to-point synchroniza-
tions, more regular code, better data locality, and being amenable to blocking, which can
further increase the granularity of parallelism by a constant factor.

Definition 9.4. A multi-dimensional affine partition mapping F for a program P is
pipelinable if and only if each row of the mapping is a legal mapping for P. That is, let
R be the data dependence set for P

™ ™ ™ ™ ™XXd ds s² :X X X; FF ,FF gR ,igZZ ,igZZ s.t. i$ i nDD iŽ .z sr z s r ss s

™ ™ ™ ™ ™X X
X X XG0nDD i G0nFF i yFF iŽ . Ž . Ž .s z sr z s r

™ ™ ™ ™X
Xs0, F i yF i G0Ž . Ž .s s

Ž .Algorithm 9.3. Find all the degrees of parallelism requiring O n synchronizations for
an outer sequential loop P, and exploit pipeline parallelism when possible.

Step 1. Apply Algorithm 9.1 to program P to get a set of maximally independent
� 1 m4partition mappings BBs F , . . . ,F . Let F be an m-dimensional pipelinable partition

mapping whose rows are the mappings in BB.

Step 2. Let F X be the first my1 rows of, F and F m be the last row. Map the
Ž my1. Xoperations in P to O n processors using F where n is the number of iterations in

a loop, and partition the computation assigned to each processor in time using F m. Each
processor executes its time partitions in sequence, and operations in each time partition

Ž .are executed in their original sequential order. Each processor p , . . . , p synchro-1 my1
Ž . Ž .nizes with its my1 neighbors p y1, . . . , p , . . . , p , . . . , p y1 before each1 my1 1 my1

Ž . Ž .time partition, and its my1 neighbors p q1, . . . , p , . . . , p , . . . , p q1 after1 my1 1 my1

each time partition.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 469

Step 3. Apply Algorithm 8.1 to each partition of F to find all the degrees of parallelism
Ž .requiring at most O 1 synchronizations.

Lemma 9.6. Algorithm 9.3 yields ry1 degrees of pipeline parallelism where r is the
rank of an affine partition whose rows are the legal, maximally independent affine
mappings for an outer sequential loop.

Ž .Proof. The synchronizations in the program ensure that partition ps p , . . . , p1 m
X Ž X X . X Xexecutes after p s p , . . . , p , ;p Fp , whenever p/p . By Definition 9.4 and the1 m i i

fact that all instructions in each partition execute in the original sequential order, the
program is correct. Since the rank of F is r, the mapping divides the computation into
Ž r .O n time partitions. From the synchronization pattern, we see that each partition only

Ž .needs to wait at most O n time step to start. Thus, there must be ry1 degrees of
parallelism.I

Theorem 9.7. Algorithm 9.3 finds the maximum degree of parallelism with at most one
degree of synchronization in an outer sequential loop P.

� 1 m4Proof. Let BBs F , . . . ,F be the set of legal, maximally independent partition
mappings found in Step 1 of Algorithm 9.3, and F of rank r be the pipelinable affine
mapping used.

We prove the theorem by introducing another algorithm—we prove that the new
algorithm has the property desired and establish its equivalence with Algorithm 9.3. Let

X i ˆiF sÝ F , and F be the first my1 rows of F . The steps of the algorithm are:F g BB
Ž . X Ž .1 partition the program P in time using F , 2 partition each time partition in space

ˆ Ž . Ž .using F , and 3 find all the parallelism requiring at most O n synchronizations in each
ˆof the space partitions. F is a synchronization-free space-partition mapping for each

partition in F X, because F X dismisses all linear time-partition constraints between
different partitions in F . If the rank of F is r, the rank of the m-dimensional mapping

X ˆwith rows F and must F also be r. Thus, the partitioning in time and space creates
Ž r . Ž .O n partitions requiring O n synchronizations, yielding r-1 degrees of parallelism.

Ž .By Lemmas 9.4 and 7.3, the algorithm finds all the parallelism using O n synchroniza-
tions.

By Lemma 9.6, pipelining P also yields ry1 degrees of parallelism with one degree
of synchronization. Since F X is the sum of the rows in F , it is easy to show that for

ˆeach partition in F , there exists a partition in F with the same operations, and vice
Ž .versa. Thus, Algorithm 9.3 must also find the maximum degree of parallelism with O n

synchronizations.I

9.5. Example

Consider the following example of an outer sequential loop:

for l =1 to ny1 do1

for l =0 to ny1 do2

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475470

for l =0 to ny1yl do3 2

a[l ,l +l]+=b[l ,l])a[l y1,l +l]; [1]1 2 3 2 3 1 2 3

for l' =l +1 to ny1 do3 2

a[l ,l']-=b[ny1yl ,l'])a[l ,l]; [2]1 3 2 3 1 2

Instruction 1 modifies each l th row of matrix a using the lower triangular elements1
w xin matrix b, and instruction 2 updates a l using the upper triangular portion of b.1

Let us first consider how previous parallelization algorithms would parallelize this
code. Being able to handle only perfectly nested loops, algorithms based on unimodular
transforms can only parallelize the innermost loops, l and lX . Given that the number of3 3

iterations in loops l and lX are different, algorithms based on general loop transforma-3 3

tions would not attempt to fuse the two loops and would again parallelize only the
innermost loops. Affine scheduling would map each of the instructions to a 2-dimen-
sional time, giving one degree of innermost parallelism. Thus, previous approaches
would find only one degree of parallelism within two degrees of synchronization. While
our algorithm also finds one degree of parallelism, the parallelism we find is coarser
grained, requiring only one degree of synchronization.

™ ™T TX Xw x w xLet ls l l l and l s l l l . When applied to this example, Step 11 2 3 1 2 3

of Algorithm 9.3 finds two legal, independent, affine time–partition mappings:
™ ™X1 1 1F s F l s l ,F l s lŽ . Ž .½ 51 1 2 1

™ ™X X2 2 2F s F l s l q l ,F l s lŽ . Ž .½ 51 2 3 2 3

Step 2 of the algorithm pipelines the computation, by mapping the operations to
processors using F 1 and partitioning the space partitions in time using F 2. The desired
SPMD code can be derived from the affine partitions easily. The processor’s ID is

Ž .denoted by p; the ith wait q executed by processor p stalls its execution until
Ž .processor q executes the ith signal p .

if (1FpFny1) then
if p)1 then wait(py1)
a[p,0]+=b[0,0])a[py1,0]; [1]

if p-ny1 then signal(p+1)
for k =1 to ny1 do1

if p-1 then wait (py1)
for k =0 to k y1 do2 1

a[p,k]+=b[k ,k yk])a[py1,k]; [1]1 2 1 2 1

a[p,k]y=b[ny1yk ,k])a[p,k]; [2]1 2 1 2

a[p,k]+=b[k ,0])a[py1,k]; [1]1 1 1

if p-ny1 then signal(p+1)

The computation assigned to processor p is simply the pth iteration of the outermost
loop. The execution order on each processor is illustrated in Fig. 3. The figure shows the
original iteration space of instructions 1 and 2 assigned to each processor, with each

Ž .iteration labeled by their new indices k , k in the SPMD code. Note that the first1 2

column of the iteration space for instruction s is executed outside the innermost loop.1

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 471

l3

l2

l3’

3,2

2,1 3,1

1,0 2,0 3,0

3,3

2,2 3,2

1,1 2,1 3,1

0,0 1,0 2,0 3,0

l2 S1

S2

Fig. 3. Execution order for each processor in the example.

The labels on these operations indicate their relative execution order with respect to the
other operations. The code generated by our algorithm requires each processor to

Ž .synchronize with only two processors every O n operations, whereas previous solu-
tions of parallelizing only the innermost loops would require each processor to execute a
barrier after every operation.

10. Maximum degrees of parallelism

We now present the final algorithm that uses all the components above to find all the
parallelism, at their coarsest granularity, in a program. In practice, we only need to find
enough coarse-grain parallelism to use the available parallel hardware. As the steps in
the algorithm find successively finer granularities of parallelism, the algorithm can halt
as soon as sufficient parallelism is found.

Algorithm 10.1. Find all the degrees of parallelism in a program, with all the
parallelism being as coarse-grain as possible.

Step 1. Find the maximum degree of synchronization-free parallelism: Apply Algorithm
7.3 to the program.

Ž .Step 2. Find the maximum degree of parallelism that requires O 1 synchronizations:
Apply Algorithm 8.1 to each of the space partitions found in Step 1.

Ž .Step 3. Find the maximum degree of parallelism that requires O n synchronizations:
Apply Algorithm 9.2 or Algorithm 9.3 to each of the partitions found in Step 2.

Step 4. Find the maximum degree of parallelism with successively greater degrees of
synchronization: Recursively apply Step 3 to computation belonging to each of the space
partitions generated by the previous step until all parallelism is found.

Theorem 10.1. Algorithm 10.1 finds all the degrees of parallelism in a program, with
all the parallelism being as coarse-grain as possible.

Proof. By Lemmas 7.3, 8.2, 9.4 and Theorem 9.7, the program maximizes the degree of
parallelism in a program. By Theorems 7.2, 8.3, 9.5, and 9.7, Steps 1, 2 and 3 find all

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475472

Ž . Ž .the degrees of parallelism with at most 0, O 1 and O n synchronization, respectively,
and recursive application of Step 3 finds all the coarsest granularity of parallelism.I

The worst-case complexity of the algorithm is exponential as the algorithm uses
techniques such as Fourier-Motzkin Elimination. We plan to develop efficient algo-
rithms based on this fundamental theory that take advantage of the typical simplicity
found in programs in practice.

11. Conclusion

This paper presents an algorithm to find the optimal affine mapping that maximizes
the degree of parallelism while minimizing the degree of synchronization. Our algorithm
is powerful, as affine partitioning encompasses many previously proposed program
transformations including loop distribution, fusion, scaling, reindexing, unimodular
transforms, and statement reordering.

We formulate the problem of maximizing parallelism and minimizing synchroniza-
tion from first principles, without the use of imprecise abstractions such as data
dependence vectors. We define two fundamental affine program transformation con-
straints: space-partition constraints and time-partition constraints, where the latter is a
relaxation of the former. We show that the problem of finding all the degrees of
parallelism, at the coarsest granularity of parallelism, can be reduced to finding solutions
to these constraints alternately. Furthermore, we show that finding these solutions is
made simple using two ideas. First, we use the Farkas Lemma to reduce the constraints
to a set of linear inequalities. Second, with the degrees of parallelism as the metric,
optimal mappings can be obtained using simple algorithms that find solutions to linear
inequalities.

Our algorithm to finding synchronization-free space partitions is not too different
from the others in the literature. It is perhaps more surprising that a similarly simple
technique can minimize synchronization and find time partitions with maximum degrees
of parallelism. The key insight is that a set of maximally independent legal partition
mappings can be combined linearly to form a time-partition mapping that yields
maximum parallelism. Moreover, the legal mappings can be combined as rows of a
multi-dimensional mapping to yield pipeline parallelism, which has better locality and
less synchronization overhead.

Appendix A. Algorithm A

Input: A: a matrix
Output: B: a matrix
Description: The algorithm finds a maximal set of linearly independent solutions for

™™AxG0, and expresses them as rows of matrix B.

w xLet m=n be the size of matrix A, and a b denotes the bth component of a.

M: a matrix[AT; r [1; c [1;0 0

B[I ; r) an n=n identity matrix)rn=n

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 473

While true do

w X xw X xr) 1. Make M r :r y1 c :c y1 into a diagonal matrix with positive diagonal entries0 0
X Xw xw x w xand M r :n c :m s0. M r :n are solutions.)r0

X X Xr sr ; c sc ;0 0
X Xw xw xWhile ' M r c /0 s.t. ryr ,cyc G0 do

X Xw xw x w xw xMove pivot M r c to M r c by row and column interchange.
XInterchange row r with row r in B.

X Xw xw xIf M r c -0 then
X X X Xw x w x w x w xM r [y1)M r ; B r [y1)B r ;

end if;
For rowsr to n do0

X Xw xw xIf row/r nM row c /0 then
X X XŽ w xw x w xw x.u[y M row c rM r c ;

X Xw x w x w x w x w x w xM row [M row qu)M r ; B row [B row qu)B r ;
end if;

end for;
X X X Xr [r q1; c [c q1;

end while;

w X xr) 2. Find solution besides M r :n . It must be a non-negative combination of
Xw xw xM r :r y1 c :m .)r0 0

X X X X Xw xw x w xw xFind k , . . . ,k G0 s.t. k M r c :m q . . .qk M r y1 c :m G0;r ry1 r 0 ry10 0

If ' a non-trivial solution, say k)0, thenr
Xw x w x w xXM r [k M r q . . .qk M r y1 NoMoreSoln[False;r 0 r y10Xw xelse r) M r :n are the only solutions.)r

NoMoreSoln[True;
end if;

w xw xr) 3. Make M r :r y1 c :m G0.)r0 n 0
Xw x w xIf NoMoreSoln then r) Move solutions M r :n to M r :r y1 .)r0 n

XFor rsr to n do
XInterchange rows r and r qryr in M and B;0

end for;
Xr :sr qnyr q1;n 0

else r) Use row addition to find more solutions.)r
r [nq1;n

XFor colsc to m do
w xw xIf ' M row col -0 s.t. rowGr then0
w xw xIf ' M r col)0 s.t. rGr then0

For rowsr to r y1 do0 n
w xw xIf M row col -0 then

uŽ w xw x w xw x.vu[yM row col rM r col ;
w x w x w x w x w x w xM row [M row qu)M r ; B row [B row qu)B r ;

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475474

end if;
end for;

else
For rowsr y1 to r step y1 don 0

w xw xIf M row col -0 then
r [r y1;n n

w x w x w x w xInterchange M row with M r ; Interchange B row with B r ;n n

end if;
end for;

end if;
end if;

end for;
end if;

w xw xr) 4. Make M r :r y1 1:c y1 G0)r0 n 0

For rowsr to r y1 do0 n

For cols1 to c y1 do0
w xw xIf M row col -0 then

w xw xPick an r s.t. M r col)0nr-r .0
uŽ w xw x w xw x.vu[yM row col rM r col ;

w x w x w x w x w x w xM row [M row qu)M r ; B row [B row qu)B r ;
end if;

end for;
end for;

w xr) 5. If necessary, repeat with rows M r :n)rn
Ž Ž . Ž ..If NoMoreSolnk r)n k r sr thenn n 0

Remove row r to row n from B. Return B.n

else
c [mq1;n

For colsm to 1 step y1 do
w xw xIf ~ M r col)0 s.t. r-r thenn

c [c y1;n n

Interchange column col with c in M;n

end if;
end for;
r [r ; c [c ;0 n 0 n

end if;

end while;

References

w x1 A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986.
w x2 D. Bacon, S. Graham, O. Sharp, Compiler transformations for high-performance computing, Computing

Ž . Ž .Surveys 26 4 1994 345–420.

()A.W. Lim, M.S. LamrParallel Computing 24 1998 445–475 475

w x3 J.R. Allen, D. Callahan, K. Kennedy, Automatic decomposition of scientific programs for parallel
execution, in: Conference Record of the Fourteenth Annual ACM Symposium on Principles of Program-
ming Languages, 1987, pp. 63–76.

w x4 U. Banerjee, Loop Transformations for Restructuring Compilers, Kluwer Academic, 1993.
w x5 K. Kennedy, K.S. McKinley, Optimizing for parallelism and data locality, in: Proceedings of the 1992

ACM International Conference on Supercomputing, 1992, pp. 323–334.
w x6 D.J. Kuck, R.H. Kuhn, D. Padua, B. Leasure, M. Wolfe, Dependence graphs and compiler optimizations,

in: Conference Record of the Eighth ACM Symposium on Principles of Programming Languages, 1981,
pp. 207–218.

w x Ž .7 D. Padua, M. Wolfe, Advanced compiler optimizations for supercomputers, Commun. ACM 29 1986
1184–1201.

w x8 M.J. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, Cambridge, MA, 1989.
w x9 K.S. McKinley, Evaluating automatic parallelization for efficient execution on shared-memory multipro-

cessors, in: Proceedings of the 1994 ACM International Conference on Supercomputing, 1994.
w x10 K. Smith, B. Appelbe, Determining transformation sequences for loop parallelization, in: Proceedings of

the Fifth Workshop on Programming Languages and Compilers for Parallel Computing, 1992.
w x11 D. Whitfield, M.L. Soffa, Investigating properties of code transformations, in: Proceedings of the 1993

International Conference on Parallel Processing, ACM, 1993.
w x Ž .12 D.I. Moldovan, On the analysis and synthesis of vlsi algorithms, Trans. Comput. 31 1982 1121–1125.
w x13 P. Quinton, Automatic synthesis of systolic arrays from uniform recurrent equations, in: Proceedings of

the Eleventh Symposium on Computer Architecture, 1984.
w x14 U. Banerjee, Unimodular transformations of double loops, in: Proceedings of the Third Workshop on

Programming Languages and Compilers for Parallel Computing, 1990, pp. 192–219.
w x15 M.E. Wolf, M.S. Lam, A loop transformation theory and an algorithm to maximize parallelism, Trans.

Ž .Parallel Distributed Systems 2 1991 452–470.
w x16 A. Darte, Y. Robert, Affine-by-statement scheduling of uniform loop nests over parametric domains.

Technical Report 92-16, Laboratoire de l’Informatique du Parallelisme, 1992.´
w x17 P. Feautrier. Some efficient solutions to the affine scheduling problem, part i, one-dimensional time.

Technical Report 92.28, Institut Blaise PascalrLaboratoire MASI, 1992.
w x18 P. Feautrier, Some efficient solutions to the affine scheduling problem: Part II. Multi-Dimensional Time,

Technical Report 92.78, Institut Blaise PascalrLaboratoire MASI, 1992.
w x19 P. Feautrier, Some efficient solutions to the affine scheduling problem: Part I. One-dimensional time, Int.

Ž . Ž .J. Parallel Programming 21 5 1992 313–348.
w x20 P. Feautrier, Some efficient solutions to the affine scheduling problem: Part II. Multidimensional time,

Ž . Ž .Int. J. Parallel Programming 21 6 1992 .
w x21 P. Feautrier, Towards automatic distribution, Technical Report 92.95, Institut Blaise PascalrLaboratoire

MASI, December 1992.
w x22 A. Darte, G. Silber, F. Vivien, Combining retiming and scheduling techniques for loop parallelization and

loop tiling. Technical Report 96-34, Laboratoire de l’Informatique du Parallelisme, 1996.´
w x23 W. Kelly, W. Pugh, Minimizing communication while preserving parallelism, in: Proceedings of the 1996

ACM International Conference on Supercomputing, 1996, pp. 52–60.
w x24 C. Ancourt, F. Irigoin, Scanning polyhedra with DO loops, in: Proceedings of the Third ACMrSIGPLAN

Symposium on Principles and Practice of Parallel Programming, 1991, pp. 39–50.
w x25 A.W. Lim, M.S. Lam, Communication-free parallelization via affine transformations, in: Proceedings of

the Seventh Workshop on Programming Languages and Compilers for Parallel Computing, Springer,
1994, pp. 92–106.

w x26 A.W. Lim, M.S. Lam, Maximizing parallelism and minimizing synchronization with affine transforms,
in: Conference Record of the 24th Annual ACM Symposium on Principles of Programming Languages,
1997.

