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Abstract

Joeq1 is a virtual machine and compiler infrastructure designed to
facilitate research in virtual machine technologies such as Just-In-
Time and Ahead-Of-Time compilation, advanced garbage collec-
tion techniques, distributed computation, sophisticated scheduling
algorithms, and advanced run time techniques. Joeq is entirely im-
plemented in Java, leading to reliability, portability, maintainabil-
ity, and efficiency. It is also language-independent, so code from
any supported language can be seamlessly compiled, linked, and
executed — all dynamically. Each component of the virtual ma-
chine is written to be independent with a general but well-defined
interface, making it easy to experiment with new ideas. Joeq is re-
leased as open source software, and is being used as a framework
by researchers all over the world on topics ranging from automatic
distributed virtual machines to whole-program pointer analysis.

Categories and Subject Descriptors

D.3 [Software]: Programming Languages; D.3.4 [Programming
Languages]: Processors—Compilers, Interpreters, Memory man-
agement, Run-time environments

1 Introduction

Joeq is a virtual machine and compiler infrastructure designed to
be a platform for research in compilation and virtual machine tech-
nologies. We had three main goals in designing the system. First
and foremost, we wanted the system to be flexible. We are inter-
ested in a variety of compiler and virtual machine research topics,
and we wanted a system that would not be specific to researching
a particular area. For example, we have interest in both static and
dynamic compilation techniques, and in both type-safe and unsafe
languages. We wanted a system that would be as open and general
as possible, without sacrificing usability or performance.

1Joeq (pronounced like the name “Joe” and the letter “Q”)
means “advanced level” in Japanese.
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Second, we wanted the system to be easy to experiment with. As its
primary focus is research, it should be straightforward to prototype
new ideas in the framework. With this in mind, we tried to make
the system as modular as possible so that each component is easily
replaceable. Learning from our experience with Jalapeño, another
virtual machine written in Java, we decided to implement the entire
system in Java. This makes it easy to quickly implement and proto-
type new ideas, and features like garbage collection and exception
tracebacks ease debugging and improve productivity. Being a dy-
namic language, Java is also a good consumer for many of our dy-
namic compilation techniques; the fact that our dynamic compiler
can compile the code of the virtual machine itself means that it can
dynamically optimize the virtual machine code with respect to the
application that is running on it. Java’s object-oriented nature also
facilitates modularity of the design and implementation.

Third, we wanted the system to be useful to a wide audience.
The fact that the system is written in Java means that much of
the system can be used on any platform that has an implemen-
tation of a Java virtual machine. The fact that Joeq supports
popular input languages like Java bytecode, C, C++, and even
x86 binary code increases the scope of input programs. We re-
leased the system on the SourceForge web site as open source
under the Library GNU Public License. It has been picked up
by researchers for various purposes including: automatic extrac-
tion of component interfaces[34], static whole-program pointer
analysis[33], context-sensitive call graph construction, automatic
distributed computation, versioned type systems for operating sys-
tems, sophisticated profiling of applications[30], advanced dynamic
compilation techniques[31], system checkpointing[32], anomaly
detection[19], Java operating systems, secure execution platforms
and autonomous systems[8]. In addition, Joeq is now used as the
basis of the Advanced Compilation Techniques class taught at Stan-
ford University.

Joeq supports two modes of operation: native execution and hosted
execution. In native execution, the Joeq code runs directly on
the hardware. It uses its own run-time routines, thread package,
garbage collector, etc. In hosted execution, the Joeq code runs on
top of another virtual machine. Operations to access objects are
translated into calls into the reflection library of the host virtual
machine. The user code that executes is identical, and only a small
amount of functionality involving unsafe operations is not available
when running in hosted execution mode. Hosted execution is useful
for debugging purposes and when the underlying machine architec-
ture is not yet directly supported by Joeq. We also use hosted execu-
tion mode to bootstrap the system and perform checkpointing[32],
a technique for optimizing application startup times.
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Figure 1. Overview of the Joeq system. Arrows between blocks signify either the flow of data between components, or the fact that
one component uses another component.

The remainder of this paper is organized as follows. Section 2 gives
an overview of the Joeq system. Sections 3 through 9 cover each
of the components in detail. Section 10 covers some related work,
and section 11 discusses the state of the project and some future
directions.

2 Overview

As shown in Figure 1, the Joeq system consists of seven major parts:

• Front-end: Handles the loading and parsing of input files
such as Java class files, SUIF files, and binary object files.

• Compiler: A framework for performing analyses and opti-
mizations on code. This includes the intermediate representa-
tion (IR) of our compiler.

• Back-end: Converts the compiler’s intermediate representa-
tion into native, executable code. This code can be output to
an object file or written into memory to be executed. In ad-
dition, it generates metadata about the generated code such as
garbage collection maps and exception handling information.

• Interpreter: Directly interprets the various forms of compiler
intermediate representations.

• Memory Manager: Organizes and manages memory.
Joeq supports both explicitly-managed and garbage-collected
memory.

• Dynamic: Provides profile data to the code analysis and op-
timization component, makes compilation policy decisions,
and drives the dynamic compiler.

• Run-time Support: Provides runtime support for introspec-
tion, thread scheduling, synchronization, exception handling,
interfacing to external code, and language-specific features
such as dynamic type checking.

Sections 3 through 9 cover each of the components in detail.

3 Front-end

The front-end component handles the loading and parsing of input
files into the virtual machine. Joeq has support for three types of
input files: Java class files[22], SUIF intermediate representation
files[2], and ELF binary files[27].

The Java class loader decodes each Java class file into an object-
oriented representation of the class and the members it contains.
Our class loader fixes many of the nonuniformities and idiosyn-
crasies present in Java class files. For example, Joeq makes a dis-
tinction at the type level between static and instance fields and
methods; i.e. there are separate classes for instance methods and
static methods and likewise for fields. In the Java class file represen-
tation, there is no distinction between member references to static
and instance members. We handle this by deferring the creation
of the object representing the field or method until we are actually
forced to resolve the member, at which point we know whether it
is static or instance. We also explicitly include the implicit “this”
parameter in the parameter list for instance methods, so code can
treat method parameters uniformly.

The SUIF loader loads and parses SUIF files, a standard in-
termediate format that is widely used in the compiler research



community[2]. There are SUIF front-ends available for many lan-
guages including C, C++, and Fortran.2 This allows Joeq to easily
load and compile many languages.

The ELF binary loader can load and decode x86 object files, li-
braries, and executable images in the popular ELF format[27]. The
front-end also includes an intelligent x86 disassembler, which can
disassemble the binary code for a function, undoing stack spills and
converting the code into operations on pseudo-registers. It also rec-
ognizes some common control flow paradigms. This allows Joeq to
seamlessly load and analyze binary code as if it were just another
front-end.

All three of these formats are converted into a unified intermediate
representation called the Quad form, which is based on pseudo-
registers and is covered in more detail in the next section. Be-
cause all inputs lead to a unified format, all analyses and opti-
mizations on that format can be performed uniformly across all of
the different types of code. This allows us, for example, to inline
Java Native Interface (JNI) C function implementations into their
callers[25], or analyze arbitrary library calls to see if a passed-in
reference can be written to another location. This is especially pow-
erful because it allows us to avoid a lot of redundant checks and
marshalling/unmarshalling of arguments and lets analyses and op-
timizations avoid having to make conservative assumptions about
cross-language procedure calls.

4 Code Analysis and Optimization

One of the goals of the Joeq infrastructure is a unified framework
for both static and dynamic compilation and analyses. Further-
more, we would like to support a wide variety of input languages,
from high-level languages like Java all the way down to machine
code. However, we would still like to be able to explicitly represent
high-level operations in the IR to facilitate sophisticated, language-
dependent analyses and optimizations. The compiler framework
was designed with all of these goals in mind.

4.1 The Quad IR

The major intermediate representation in Joeq is the Quad format.
The Quad format is a set of instructions, called Quads, that are orga-
nized into a control flow graph. Each Quad consists of an operator
and up to four operands. For efficiency, Quads are implemented as a
final class; polymorphism is implemented in the different operators
and operands. However, we retain most of the benefit of polymor-
phism on quads by utilizing strict type checking on the operator
type. Operators are implemented using the singleton pattern, so
there is only one instance of each operator, which is shared across
multiple Quads.

The control flow graph in the Quad format does not explicitly rep-
resent control flow edges due to exceptions. Instead, edges due to
exceptional control flow arefactoredso that there is only one “ex-
ception” edge for each basic block[11]. This exception edge points
to the exception handlers that can catch exceptions thrown in the
block. This means that, due to exceptions, control flow can poten-
tially exit from the middle of a basic block. However, this greatly
reduces the number of basic blocks and control flow graph edges
and thereby makes compilation more efficient.

2So far, we have only attempted to load SUIF files that were
compiled from C and C++. Although other languages should theo-
retically work correctly, they have not been tested yet.

Operators in the Quad format fall into three classes: high, mid-
dle, and low. High-level operators correspond to complicated, often
language-dependent operations, such as array accesses, method in-
vocations, or dynamic type checks. These operations operate solely
on symbolic references and are therefore independent of the vir-
tual machine and object memory layout. Middle-level operators
correspond to more basic operations such as loads and stores to cal-
culated addresses. These operations are dependent on the memory
layout but are still independent of CPU type. Finally, low-level op-
erators correspond to machine code instructions. At this low level,
pseudo-registers are replaced by physical registers, and code can be
generated.

As compilation proceeds, translation passes on the Quad format re-
place higher-level operations with equivalent sequences of lower-
level operations. However, the basic data structures stay the same,
so one can uniformly execute compiler passes on the IR regardless
of its level. This maximizes code reuse in the compiler.

The different types of operators in the Quad format form a hierar-
chy, as seen in Figure 2. Analyses can useinstanceof tests or the
visitor pattern[7, 17] to select the Quads that match certain charac-
teristics.

The Quad IR supports the inclusion of optional supplementary in-
formation such as profile data and mappings back to line numbers
in the source code. These are implemented as extensions to the IR
and are not required for correct operation. Extensions implement a
standard interface that specifies how to update the extra data when
performing various IR transformations. This allows the compiler
to automatically and implicitly update data even across IR transfor-
mations.

4.2 The Bytecode IR

In addition, to experiment with rapid code generation from byte-
code and also to leverage existing bytecode analyses and tools, Joeq
includes a bytecode IR, which corresponds directly to the bytecode
in the Java class file. The major difference between the bytecode
IR and the Quad IR is that the bytecode IR is stack-based, while the
Quad IR is register-based. The design of the bytecode framework
is based on the Byte Code Engineering Library (BCEL), a popular
open-source library for analyzing and manipulating bytecode[13].
We took the opportunity to clean up some of the BCEL interfaces;
for example, by construction BCEL uses separate objects for loaded
classes versus classes that can be modified — Joeq merges these
into a single object. Most code written to use BCEL will work with
Joeq with only a few trivial modifications. Joeq can also output Java
class files using the bytecode IR along with the class and member
metadata. For simple code analyses and transformations, the byte-
code IR is very efficient because it avoids the step of converting the
stack-based bytecode to the register-based Quad format.

4.3 Generalized Interface

Both the bytecode and the Quad intermediate representations im-
plement a single, generalized compiler interface. Individual byte-
codes and Quads implement theCodeElement interface, which
provides basic functionality such as finding possible successors and
returning the uses and definitions. Code written to this general-
ized compiler interface will work regardless of the specific IR being
used. This allows the implementation of many data-flow analyses,
such as calculating def-use chains and dead code elimination, to be
shared between the two IRs.
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Figure 2. Overview of the operator hierarchy. Visitors visit in most-specific to least-specific order.

The compiler makes very extensive use of the visitor design
pattern[7, 17]. The visitor pattern allows the traversal order to
be effectively separated from the operations performed on each
element. This makes writing compiler passes very easy — all
compiler passes are implemented as visitors over various struc-
tures in the IR. Operators form a hierarchy as shown in Figure 2.
Visitors visit in most-specific to least-specific order. For exam-
ple, when encountering aNullCheck instruction, the first method
that will be called isvisitNullCheck, followed byvisitCheck,
visitExceptionThrower, and finally the genericvisitQuad
method.

Figure 3 gives the code for a simple side-effect analysis. This anal-
ysis keeps track of which static and instance fields can be touched
by a method, along with the set of invocations in that method. To
use the analysis, we simply instantiate an analysis object and pass
it to the default visit method. The default visit method traverses the
control flow graph and visits each instruction, calling the appropri-
ate visitor methods on the supplied visitor object.

public classSideEffectAnalysis
extendsQuadVisitor.EmptyVisitor{

SettouchedStaticFields= newHashSet();
SettouchedInstanceFields= newHashSet();
SetmethodCalls= newHashSet();
void visitInstanceField(CodeElementq) {

touchedInstanceFields.add(InstanceField.getField(q));
}
void visitStaticField(CodeElementq) {

touchedStaticFields.add(StaticField.getField(q));
}
void visitInvoke(CodeElementq) {

methodCalls.add(q);
}

}
...
a = newSideEffectAnalysis();
cfg.visit(a);
...

Figure 3. Example code for a simple side-effect analysis.

4.4 Dataflow Framework

Joeq includes a standardized dataflow framework. Dataflow prob-
lems are specified by subclassing the abstractDataflow.Problem
class. The abstract methods of this class include the standard speci-
fication of a dataflow problem: direction, dataflow boundary condi-
tion, initial dataflow value on interior points, transfer function, and
confluence function. There are also abstract interfaces for pieces of
dataflow information (theDataflow.Fact interface) and transfer
functions (theDataflow.TransferFunction interface). The API
for theDataflow.Problem class is contained in Figure 4.

booleandirection()
Returns the direction of this dataflow problem (true=forward,
false=backward).

Fact boundary()
Returns the dataflow boundary condition.

Fact interior()
Returns the initial dataflow value on interior points.

TransferFunction getTransferFunction(CodeElement)
Returns the transfer function for the given code element.

Fact apply(TransferFunction, Fact)
Returns the result of applying a transfer function to a given
dataflow fact.

booleancompare(Fact, Fact)
Returns true if two dataflow facts are equal, false otherwise.

Fact meet(Fact, Fact)
Returns the result of meeting two dataflow facts.

TransferFunction compose(TransferFunction, TransferFunction)
Returns the composition of two transfer functions.

TransferFunction closure(TransferFunction)
Returns the transfer function that is the Kleene closure of the
given transfer function.

Figure 4. Overview of the API for the Dataflow.Problem class.

Joeq includes three standard solvers. The first is an iterative solver
that iterates over the basic blocks in a given order (typically re-



verse post-order) until the dataflow values converge. The second is
a worklist solver that utilizes a worklist of basic blocks that need
to be (re-)computed. The worklist is implemented with a priority
queue, where the priority of a basic block is its reverse-post-order
number. The third is a strongly-connected component solver that
solves the dataflow by finding and collapsing strongly-connected
components. Only the last solver uses thecomposeand closure
methods on transfer functions.3

The simplicity and completeness of the standardized dataflow
framework makes the implementation of new analyses and opti-
mizations very quick and easy. We have already implemented many
of the standard dataflow analyses and optimizations. Work on more
optimizations and analyses is ongoing.

4.5 Interprocedural Analysis Framework

Joeq includes significant support for performing interprocedural
analysis through the use of an advanced call graph interface. The
call graph interface supports both precomputed and on-the-fly call
graphs with both partial-program and whole-program compilation
models. It includes support for profile information to be attached to
call graph edges. It also supports the use of context information at
call sites, so it can distinguish between calls made under different
contexts.

Joeq includes code to perform many common graph algorithms
such as finding dominators, calculating a reverse post-order or find-
ing strongly-connected components. The graph algorithms are all
written to a genericGraph interface, which is implemented by all
graphs in Joeq, including the call graph and the control flow graph.
This allows the programmer to easily perform traversals and calcu-
lations over any type of graph.

The interprocedural analysis framework is similar to the intrapro-
cedural dataflow framework, but in addition it supplies calling
context information to the analysis. The default solver begins
with an initial call graph, which can be obtained via class hi-
erarchy analysis[14], rapid type analysis[6], or whole-program
pointer analysis[33]. The solver breaks the call graph into strongly-
connected components, and then performs a bottom-up traversal,
iterating around the strongly-connected components until they con-
verge and generating a summary for each unique entry into a
strongly-connected component. The analysis framework also in-
cludes support for discovering the call graph on the fly. We have
used the interprocedural analysis framework to implement vari-
ous context-sensitive and context-insensitive, whole-program and
partial-program pointer analyses[33, 35]. The framework is effi-
cient, with whole-program analysis times that are competitive to
that of a C implementation[20].

5 Back-end

Joeq includes back-end assemblers that generate executable code
from the compiler’s intermediate representation. In addition to the
executable code, the back-ends generate metadata about the code,
such as reference maps for garbage collection, exception tables,
line numbers for debugging and generating exception tracebacks,
and the locations of heap and code references in the code. This

3The Dataflow.Problem class contains default implementa-
tions of thecomposeandclosuremethods that perform the general
operations. However, some dataflow analyses can be made more
efficient by overriding the default implementations.

metadata is used by the runtime system and garbage collector, and
to support code relocation. To allow for efficient generated code,
the backend allows absolute memory references to be in the code.
If the code or the referenced object moves due to compaction in
the garbage collector, the absolute reference is updated. The back-
end also has generalized support for atomically patching code frag-
ments in a thread-safe manner without having to perform synchro-
nization operations[21].

The code from the back-end can be output in three formats. The
first is to put the code into memory for immediate execution. The
second and third are to output the code in standard ELF or COFF
object file formats respectively. The object files include the code
relocations contained in the metadata. These object files can be
linked into standalone executables.

6 Interpreter

Joeq includes interpreters for both the Quad IR and the bytecode
IR. These interpreters are implemented using the visitor design pat-
tern. This makes it easy to modify the interpreter to gather profiling
information — simply make a new subclass of the interpreter that
overrides thevisit methods corresponding to the types of instruc-
tions that you care about.

Both interpreters have two modes of interpretation: direct and re-
flective. In direct interpretation, the interpreter uses the same stack
as the compiled code, reading and writing values through direct
memory accesses. Direct interpretation can only be used when Joeq
is running natively. In reflective interpretation, the interpreter keeps
a separate stack frame and performs all of the operations through
reflection. Reflective interpretation can be used even when Joeq is
running on a host virtual machine. The reflective interpreter also
includes support for executing methods that cannot be interpreted
in hosted execution mode, such as native methods, via reflective
invocation.

7 Memory manager

Joeq includes a general framework for memory management. It
supports both managed (explicitly allocated and deallocated) and
unmanaged (garbage collected) memory. The interface is based
on the Java Memory Toolkit (JMTk) for the Jikes RVM. It sup-
ports a wide variety of garbage collection techniques such as com-
pacting versus non-compacting, exact versus conservative, genera-
tions, concurrency, and reference counting. The specifications of
the memory manager are accessible through theGCInterface in-
terface, which includes query methods on whether garbage collec-
tion requires safe points and the nature of those safe points, whether
objects can move or not, whether the collector supports conserva-
tive information, what types of read/write barriers are necessary,
and interfaces to the allocator for various types of object alloca-
tions.

Specific allocation strategies are handled through theHeap inter-
face. Conceptually, aHeap represents a bundle of memory. Dif-
ferent allocation strategies are implemented as subclasses of the
abstractHeap interface. For example, aFreeListHeap allocates
memory using a free list allocator, aMallocHeap allocates mem-
ory through a system call tomalloc(), and aFixedSizeBinHeap
allocates memory using fixed-size bins. Multiple heaps can be in
use at the same time to handle allocations of different types. Entire
heaps can be thrown away at once when they are explicitly deallo-
cated or the collector determines that there are no more live refer-



ences into a heap.

Joeq supports the simultaneous use of both managed and unman-
aged memory. Managed memory is used when the code contains
explicit deallocations, such as calls tofree or delete, or uses a
region-based deallocation scheme. Unmanaged memory is used
when the code does not contain deallocations and instead relies
on a garbage collector to discover unused memory and reclaim it.
Joeq supports a mixture of these techniques. For example, user-
level Java code uses unmanaged memory at the same time that na-
tive method implementations usemalloc andfree and the Just-
In-Time compiler uses a region-based allocation scheme. When
searching for live references, garbage collectors must still trace
through managed and unmanaged memory to find live references
to unmanaged storage, but it reclaims storage only in the unman-
aged regions.

Raw addresses in Joeq are represented by special types:
HeapAddress, CodeAddress, and StackAddress refer to ad-
dresses that refer to locations on the heap, in the code, or on the
stack, respectively. Operations on addresses are implemented as
method calls on these types; for example, thepeek()method deref-
erences the given address and returns its contents. Abstracting these
types in the Java implementation provides a unified interface to
memory, which makes it possible to reuse much of the code for both
native execution and hosted execution. In native execution, opera-
tions on addresses are directly compiled down to their machine-
level equivalents. In hosted execution, the different address types
are implemented as subclasses to the given address types, and proxy
objects are created for addresses in the system. Operations on these
proxy objects are reflected back into the system. During bootstrap-
ping, the types on the proxy objects allow the bootstrapper to know
the correct relocation to emit for various addresses. Using well-
typed addresses also enforces a limited notion of type safety, even
when dealing with raw addresses. In addition, it makes the imple-
mentation of Joeq independent of the address width, so Joeq could
very easily be ported to a 64 bit architecture.

The object layout is also parameterized by anObjectLayout in-
terface. This interface includes methods to initialize objects and
extract various types of metadata such as object class or lock sta-
tus. Experimenting with various object layout schemes is as easy
as subclassingObjectLayout and implementing a few essential
methods.

The framework to support advanced garbage collection is in place,
but the implementation of the more advanced garbage collection al-
gorithms is still ongoing. We are attempting to leverage the imple-
mentations of the garbage collectors contained in the JMTk toolkit.

8 Dynamic Recompilation

In native execution mode, Joeq supports dynamic recompilation
based on profile information. Joeq includes two profilers. The first
is a sampling profiler, which collects information about the time-
consuming methods by periodically sampling the call stacks of the
running threads. The sampling profiler supports the collection of
context-sensitive sampling information through the use of a partial
calling context tree[30]. The sampling profiler is integrated into
the thread scheduler, which is described in the next section. The
sampling profiler is useful because it is easy to adjust the trade-off
between overhead and accuracy by varying the sampling rate.

Joeq also includes an instrumentation-based profiler, which inter-

faces with the compiler. This profiler operates by inserting instru-
mentation code into the compiled code; every time the code exe-
cutes, the instrumentation can record an event. This provides more
precise information than the sampling profiler at the expense of
generally higher profile overhead and more difficult control. Instru-
mentation code can be disabled through the use of code patching.

Data from both profilers can be output into files, which can be
loaded on subsequent runs or by the static compiler. The profile
information is also used by various compiler optimizations to im-
prove their effectiveness, for example, inlining frequently-executed
call sites or moving computation off of the common paths[31].

Joeq also includes interfaces for an online compilation controller to
control dynamic recompilation based on profile information. The
controller implementation is still work-in-progress.

9 Run-time Support

Joeq contains implementations of many necessary runtime routines
written in Java. It includes a complete reflection and introspection
mechanism. When Joeq is running in native mode, the reflection
implementation directly accesses memory. When Joeq is running
in hosted mode, reflection calls in Joeq get mapped to the corre-
sponding reflection calls on the host virtual machine. The inter-
preter always accesses data through the reflection mechanism, and
therefore works seamlessly in both native mode and hosted mode.

Joeq includes a generalized stack walking interface to walk a
thread’s stack to generate stack traces, deliver exceptions, profile
the application, enforce security, or collect references for garbage
collection. This stack walking interface works both when executing
machine code under native execution and when interpreting with
the interpreter under either native or hosted mode.

Joeq implements a fast subtype checking algorithm with positive
and negative polymorphic caches[12]. The subtype test typically
takes only three instructions and eleven words of storage per class.
This subtype checking algorithm is used both at execution time to
perform runtime type checks, as well as by the compiler passes that
perform type analysis.

Joeq includes a complete M:N thread scheduler implementation
written in Java. An M:N thread scheduler schedules M user-level
threads across N native level threads. The number of native level
threads, N, correspond roughly to the number of CPUs. The sched-
uler supports work stealing and thread migration, synchronization,
wait and notify queues, suspending/resuming, single-stepping, and
profiling. It supports three models of thread switching: fully pre-
emptive where threads can switch at any time, semi-preemptive
where thread switching can be disabled in critical regions, and co-
operative where thread switching can only occur at specific loca-
tions.

Joeq uses Onodera’s efficient bimodal field locking algorithm to im-
plement Java monitors[23], a modified version of Bacon’s thin lock
algorithm[5]. We also implemented Gagnon’s extension to avoid
object instance overhead[16]. The locking algorithm is integrated
with the thread scheduler, to avoid busy-waiting on locks and to
hand off execution to the appropriate waiting threads when using
the Javawait() andnotify() features.

The Joeq runtime interfaces with the underlying system through
shared library calls. Classes that make use of external calls access
them through a generalExternalLink interface, which holds the



library and symbol name. Libraries are loaded and symbols are
resolved only as they are needed.

Internally, Joeq stores strings in UTF-8 format rather than
Unicode[36]. All UTF-8 strings are immutable and unique; for any
given string, there is exactly oneUtf8 object that corresponds to
that string. UTF-8 is a more efficient representation than Unicode
for the mostly-ASCII strings used in Joeq. Theintern() func-
tionality in java.lang.String (whereby there is guaranteed to
be only one instance of a given string in the system) is also imple-
mented using the uniqueness inherent in the UTF-8 implementa-
tion.

In addition to supporting the Java Native Interface (JNI) for call-
ing native methods, Joeq also supports loading and compilation of
the native code through the front-end. JNI methods that are im-
plemented in C or C++ can be loaded through SUIF files. Even
if only binaries are available, the ELF file loader and disassembler
can sometimes load and disassemble the native method implemen-
tations. This allows native calls to be analyzed and inlined into call
sites, among other things.

Joeq also includes a mechanism to support the implementation of
native methods in Java. Joeq contains a special “mirror” package,
and every time a class is loaded, the class loader looks for a class
with the same name in the “mirror” package. If it exists, the mir-
ror class is also loaded and its contents are added to the original
class; method and field definitions in the mirror class replace meth-
ods and fields in the original class that have matching names and
descriptors. Thus, this mechanism allows one to append or replace
code to classes without touching the original implementation. Joeq
provides implementations of the core of the Java class library using
this technique: during the bootstrapping phase, it hijacks the class
library of the host Java virtual machine and injects its own imple-
mentations of key methods using a mirror package that corresponds
to the class library version on the host.

10 Related Work

Joeq has some similarities to another virtual machine written in
Java, called Jalapeño[1, 9]. Before Joeq, the author of this paper
worked on Jalapẽno, and some of the ideas from Jalapeño were
reimplemented in Joeq. In particular, the bootstrapping technique
and the compiler and garbage collection infrastructures were heav-
ily influenced by the designs in Jalapeño.

However, there is a difference in focus between the two systems,
which shows up in the design. Jalapeño is heavily geared towards
being a virtual machine for server-side Java, and many of the design
decisions reflect that philosophy. For example, Jalapeño completely
forgoes an interpreter and takes a compile-only approach. The run-
time, data structures and IR are fairly Java-specific. Because all vir-
tual machine data structures, including code, are treated as objects,
all code must be compiled as relocatable. As a result, Jalapeño
avoids storing absolute memory references. Jalapeño makes no use
of the visitor design pattern; it relies on switch statements instead.
There is limited support for Jalapeño as a static analysis engine or
compiler. Joeq, on the other hand, was designed from the start to be
language-independent and to include significant support for static
analysis and compilation. It includes support for analyzing C/C++
and even binary object files. It includes a static compiler and a sig-
nificant interprocedural analysis framework.

The design of the compiler infrastructure drew from two intermedi-

ate representations that the author of this paper has extensive expe-
rience with: the Jalapeño optimizing compiler IR[29] and the MIT
Flex compiler IR[3]. We tried to extract the good ideas from these
systems while leaving out difficult, ineffectual, or counterintuitive
pieces. Like Joeq, both Jalapeño and Flex use an explicitly-typed,
pseudo-register based representation with high-level and low-level
operations. They both support the same notion of factored control
flow as our Quad format. What is more interesting than the simi-
larities are the differences: In Jalapeño, the IR is simply a list of
instructions and the CFG is separate. We decided to make the CFG
part of the core IR in Joeq because almost every use of the IR re-
quires control flow information, and maintaining both the ordering
of the instructions in the list and of the control flow graph made
control-flow transformations more difficult than they needed to be.
Flex uses the notion of code factories to generate code and perform
compiler passes. We dropped this idea in Joeq in favor of using
the visitor pattern, which (to us) is simpler, easier to understand,
and easier to program correctly. Flex also includes a pointer in ev-
ery instruction back to its context. Although this can be useful, we
found it to be too space-consuming to justify.

The Ovm virtual machine is a set of tools and components for build-
ing language runtimes[24]. Like Joeq, Ovm makes significant use
of design patterns. Both systems use a type hierarchy to classify
instructions into groups with common behavior, and use this clas-
sification with a visitor pattern. To implement the visitor pattern,
Ovm uses runabouts, in which visit methods are found by reflection
and invoked by dynamically-generated helper classes[18]. The mo-
tivation behind using runabouts rather than visitors in Ovm was to
avoid two problems in the straightforward implementation of the hi-
erarchical visitor pattern: abstract or empty visit methods and redi-
recting to other visit methods in the hierarchy. Joeq avoids these
problems by providing default empty visitor classes and by putting
the traversal of the hierarchy in theaccept() methods, rather than
thevisit() methods. This has the added benefit of eliminating the
dependency on user code to explicitly call the visit method of the
superclass, a common source of subtle errors.

Ovm uses a high-level stack-based intermediate representation,
OvmIR, that is very similar to the bytecode IR in Joeq. Ovm does
not include a register-based IR comparable to Joeq’s Quad format,
but the design of OvmIR seems flexible enough to be able to be ex-
tended to support a register-based representation. Like the Joeq IR,
the instructions are self-describing and can be inspected introspec-
tively by the compiler.

There are some other virtual machines written in Java. JavaIn-
Java is an implementation of a Java virtual machine written en-
tirely in Java[26]. Rivet is an extensible tool platform for debug-
ging and testing written in Java that is structured as a Java virtual
machine[10]. Both JavaInJava and Rivet run on a host Java virtual
machine using a technique similar to hosted execution in the Joeq
virtual machine.

Marmot is an optimizing compiler infrastructure for Java that is
written almost entirely in Java[15]. It includes an optimizing native-
code compiler, runtime system, and libraries for a large subset of
Java. The compiler implements many standard scalar optimiza-
tions, along with a few object-oriented optimizations. It uses a
multi-level IR and a strongly-typed SSA form. Marmot supports
several garbage collectors written in C++. It is difficult to evalu-
ate the design of Marmot because the source code is not available.
Intel’s virtual machine is written in C++, and it also uses a typed
intermediate language[4]. One feature in common with Joeq is that
it supports garbage collection at every instruction.



SableVM is a portable Java virtual machine written in C[16]. Its
goals are to be small, fast, and efficient, as well as provide a plat-
form for conducting research. It implements many interesting tech-
niques such as bidirectional object layouts, a threaded interpreter
and efficient locking. Soot is a framework for analyzing and op-
timizing Java[28]. It includes three intermediate representations
— Baf, a streamlined bytecode representation, Jimple, a typed 3-
address representation, and Grimp, a version of Jimple with ag-
gregated high-level information. The first two representations are
similar to our bytecode and Quad IR’s, respectively. In the future,
we are planning to extend our IR to include high-level information,
a la Grimp.

The Microsoft .NET framework has similar goals of supporting
multiple languages. The Common Language Infrastructure plat-
form is a development platform that includes a virtual machine
specification (named Virtual Execution System, or VES) that has
a full-featured runtime environment that includes garbage collec-
tion, threading, and a comprehensive class library. It also includes
a general language specification (named Common Language Spec-
ification, or CLS) that compiler writers can output to if they want
to generate classes and code that can interoperate with other pro-
gramming languages. The intermediate representation that they use
is called Common Intermediate Language, or CIL. There are fron-
tends that output CIL from a huge number of languages: Managed
C++, Java Script, Eiffel, Component Pascal, APL, Cobol, Oberon,
Perl, Python, Scheme, Smalltalk, Standard ML, Haskell, Mercury
and Oberon. In the future, we plan to add a CIL loader to Joeq so
that we can leverage the various frontends and other work on CIL.
The upcoming Microsoft Phoenix project also has similar goals of
using a single framework for static and dynamic compilation of safe
and unsafe languages with support for both manual and automatic
storage.

11 Conclusion

In this paper, we described the basic design and components of the
Joeq system. Joeq is a virtual machine and compiler infrastructure
designed to be a platform for research in compilation and virtual
machine technologies. It was designed to be flexible, easy to exper-
iment with and useful to a wide audience. It supports a variety of
input languages and output formats, both dynamic and static compi-
lation and both explicitly-managed and garbage-collected memory.
It is completely written in Java and supports both native execution
and hosted execution on another virtual machine. The design is
modular and it is easy to replace components with different imple-
mentations to try out new ideas.

While implementing the system, we tried to stick to the design prin-
ciples of minimizing programmer burden, maintaining modularity
and maximizing code reuse. We think that we succeeded — we
have found it easy to extend the system, try out new ideas and
implement new functionality. The entire system is approximately
100,000 lines of Java code, which is rather small when you con-
sider its functionality. We believe that we were able to keep the size
of the implementation small by factoring out common code and tak-
ing advantage of object-oriented features and convenient software
patterns like visitors.

Although the design and interfaces are basically complete, many
components are implemented with only the most basic function-
ality. There are still many improvements that could be made on
the implementation side; for example, the code generation is not
very intelligent, optimizations are limited, there is no implementa-

tion of the dynamic compilation controller, we do not yet have an
advanced garbage collector, etc. Much of what is implemented is
lacking documentation, a very important piece for the system to be
useful to researchers. Over time, these gaps in implementation and
documentation will disappear. We would also like to investigate ex-
tensions to the system, such as a CIL front-end and back-ends for
more architectures.

The Joeq system is available as open source at
http://joeq.sourceforge.net.
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