Software Design Rules

Monica Lam
Stanford University

Joint work with: Sudheendra Hangal, David Heine, Ben Livshits,
Michael Martin, John Whaley

Software is Full of Errors

= Error rate: 1-4.5 errors per 1000 lines
= Windows 2000

= 35M LOC,

= 63000 known bugs at time of release

= 2 per 1000 lines
= Large consumer software

= Formal specification & verification
infeasible

Buffer Overruns

A buffer access must stay within bounds

Buffer overruns are responsible for over 50%
of major vulnerabilities

MS Blaster, Slammer, Code red, nimda, ...,
Internet Worm, 1988

Responsible for damages in billions

Memory Leaks

= All unused memory should be freed
once and only once

= Memory exhaustion may cause long
running programs to fail.

SQL Injection Errors

SEEl “Give me Bob’s credit card #’

| or

Web server “Delete all records”
Front end

|

Database

= User may not supply SQL queries to
databases directly

= One of top ten vulnerabilities

Happy-go-lucky SQL Query

User supplies: name, password

SELECT UserlD, Creditcard

FROM Records
WHERE
Name = ° + name
+’ AND PW =" + password +’

Fun with SQL

— " means “the rest are comments” in SQL
SELECT UserlD, CreditCard

FROM Records
WHERE:

Name = ‘bob’ AND PW = ‘foo’
Name = ‘bob’'—’

Name = ‘bob’ or 1=1—

Name = ‘bob’; DROP Records—’

Design Rules

= Buffer overruns, memory leaks,

SQL injections

= Same error is often repeated many times
» May be specific to a language,

a class of applications, a program
= |[mportant: may be critical to security

= Succinct: governs many lines of code

General Practice

= Design rules are implicit
= Violations of design rules rampant

= Tools: purify,
grep, emacs,
program environments

Leverage Computer Power

MOORE'S LAW

Intel® tanium® 2 Procosaor

o

Intel® Ranums Procoessos
Inteln Péntiumf 4 Processor
Intel®™ Pentium® il Prn—:eaﬁy/
el ™ Partaoarr® il F‘ruuu‘-i-;.:c.:_:’,r
lital® Pantiumf Procoasor g i
Intal486™ Procossor ./// ‘#/

INt2l38E™ Procesaor f" ¢

8080 = . ' . o .

8008
4004 £

1970 1975 1980 1990 1995 2000

transistors

1.000,000,000

100,000,000

10,000,000

1,000,000

100,000

Programs Don’t Grow
Exponentially!

50
2100
30
20
10 -
0
1990 1995 2000 2005

Size of Microsoft Windows

QD
O
O
O
(-
@)
n
&)
=
=
-
O
=

This Talk

New generation of
“Computer-Aided Programming Tools”
to

enforce critical software design rules

Custom Design Rule Checkers

Intrinsa, Coverity: C checkers
Built-in rules for operating systems
Relatively simple analysis

Unsound

Found thousands of critical errors in
Windows, Linux, BSD, ...

New-Generation Tools

User-Supplied,
Application-
Specific

N ol

Automatic
Extraction

Design Rules

=N

Advanced Dynamic
Static Detection
Analysis & Recovery

PQL.:

a Program Query Language

PQL: a Program Query Language

User-Supplied,
Application-
Specific

Y

Design Rules

=N

Advanced Dynamic
Static Detection
Analysis & Recovery

PQL Query

= Pattern:

= |[llegal sequences of operations on
related objects

» | ooks like the simplest code excerpt
with pattern

= Action:
= Print out result, halt program, or recover

SQL Injection

POL: X = req.getParameter();

stmt.executeQuery (x);

getParameter
1 0l = reqg.getParameter();

formal = 01;
X 02.f = formal;

l 03.g = 02.1;
stmt.executeQuery(03.9);

executeQuery

Basic Question

getParameter | =) x =mmp| executeQuery

b P1 p2J

p; and p, point to the same object?
= Undecidable!

Dynamic Checker

getParameter | =) x =mmp| executeQuery

b P1 p2J

p; and p, point to the same object?
* |[nstrument Java byte codes
= getParameter: record ID of p,’s pointee

= executeQuery:
check if p,’s pointee has been recorded

19

Static Checker

getParameter

Lo,

- X)

executeQuery

p2J

p, and p, point to same object?
Pointer alias analysis

Pointer Alias Analysis

[Whaley & Lam, PLDI 2004]

Pointer Analysis

Input Relations
7. Vi = new Object(); vPointsTo(v,,h;)
h,: v, = new Object(); vPointsTo(v,,h,)
vi.f = vy Store(v,,f,v,)
vy = v,.f; Load(v,,f,v3)

®_’ - Output Relations
@_, l@ hPointsTo(h,f,h,)

vPointsTo(v;,h,)

Inference Rule in Datalog

Stores:

hPointsTo(h,, f, h,) :- Store(v,, f, v,),
vPointsTo(v,, h,),
vPointsTo(v,, h,).

vi.f = v,

St

Pointer Alias Analysis

= Specified by 5 Datalog rules

= Creation sites
= Assignments
= Stores

= Loads

= Type filter

= Apply rules until they converge

Method Invocations

= Context insensitive is imprecise
= Unrealizable paths

a = id(b): ¢ = id(d);

E Object id(Object x) { J

return X;
)

Context Sensitivity

= Context sensitivity is important for precision.
= Conceptually give each caller its own copy.

a = id(b): ¢ = id(d):

E Object 1d(Object x) {

return Xx;

¥

Cloning-Based Analysis

= Simple brute force technique.

* Clone every path through the call graph.

= Run context-insensitive algorithm on
expanded call graph.

= The catch: exponential blowup

Cloning is exponential!

b

:)?‘: 5 &
o(zxot)ooooo %

OJDOO0OOOC

Recursion

= Actually, cloning is unbounded in the
presence of recursive cycles.

= Technique: We treat all methods
within a strongly-connected
component as a single node.

Recursion

Top 20 Sourceforge Java Apps

Number of Clones

0
b
c
S
&)
[T
o
S
b
@)
S
>
Z

10000 100000 1000000

Size of program (variable nodes)

Cloning is infeasible (?)

= Typical large program has ~10'4 paths

* |f you need 1 byte to represent a clone:
= 256 terabytes of storage
= >]2 times size of Library of Congress
= 1GB DIMMs: $98.6 million
= Power: 96.4 kilowatts (128 homes)
= 300 GB hard disks: 939 x $250 = $234,750
= Time to read sequential: 70.8 days

BDD comes to the rescue

= Many similarities across contexts.
» Many copies of nearly-identical results.

= BDDs (binary decision diagrams)
can represent large sets of redundant
data efficiently.

Static Checker Generation

PQL Query 2 lines

!

Datalog 10 lines

!

BDD code| 1000 lines

BDD: Binary Decision Diagrams

Call Graph Relation

= Call graph expressed as a relation.

= Five edges:
= Calls(A,B)

= Calls(A,C) Q
= Calls(A,D) 9"@
= Calls(B,D)

= Calls(C,D) Q

-
O
+—
©
V
a'd
<
Q
S
| -
),
I
O

G
<+
X
)
X
o~
X
X.I

Q 00
01 9"@ 10
Om

01,C=10, D=11

= A=00, B

= Relation expressed as a
binary function.

®l— — — [oNolNoel— olNoNoel— oNeoNeoNe

of— O — (ool — @l el — (@R el

olO O O (eoNeNelO

Binary Decision Diagrams

= Graphical encoding of a truth table.

Binary Decision Diagrams

= Collapse redundant nodes.

Binary Decision Diagrams

= Collapse redundant nodes.

Binary Decision Diagrams

= Collapse redundant nodes.

Binary Decision Diagrams

= Collapse redundant nodes.

Binary Decision Diagrams

= Eliminate unnecessary nodes.

Binary Decision Diagrams

= Eliminate unnecessary nodes.

Binary Decision Diagrams

= Represent tiny and huge relations
compactly

= Size depends on redundancy
= Similar contexts have similar numberings
= Variable ordering in the BDD
= 10 minutes or “runs out of memory”

= Active machine learning algorithm

Expanded Call Graph

N 866 oo

Vg
v
c=
O
O
@)
-
—
v
QO
=
S
Z

Experience

Context-sensitive points-to analysis
= 800K byte codes in less than 20 minutes

PQL suitable for many known error patterns
= SQL injection

= Resource leakage

= Persistence object management

Applied to 6 large programs unknown to us

Found 44 critical errors easily

New-Generation Tools

User-Supplied,
Application-
Specific

N £

Automatic
Extraction

R

=N,

Advanced Dynamic
Static Detection
Analysis & Recovery

Automatic
Design Rule Extraction

= Too many design rules to specify
* Principle: Most of the code is correct
* [nconsistency = Errors

Clouseau:

a static memory leak detector

Ownership Model

= Owner pointer

= Obligated to delete object, or
pass ownership to another pointer

= Every object has an owner pointer
= No memory leaks, no double deletes

Past Experience

= Decorate each function parameter with

own” “nhot-own’

= Not enforced 2> many mistakes

Assignment Statement

a = new Int;

b =2a;

delete a;

N

a = new Int;
D=a,
delete b;

(a) (b

own(b),own(a)
b=a
own’(b),own’(a)

own(b) =0
own(a) = own(a’) + own(b’)

Clouseau

Automatically infers function signatures

1)«

» Based on “new” “delete”

= Constraint: there is always 1 owning pointer
Inconsistency: error
A 125K-line commercial program

= 50 lines of user specification on
container structure (generic data types)

= Root-causes 82% of memory leaked dynamically

= Found many additional errors

[Heine&Lam, PLDI 2003]

New-Generation Tools

Automatic
Extraction

vl

DIDKGE

=N,

Advanced Dynamic
Static Detection
Analysis & Recovery

DIDUCE

Dynamic Invariant Deduction

U
Checking Engine

(deduces, but sometimes incorrectly)

57

Motivation

= Difficulty in finding
root cause of complex errors

= DIDUCE can potentially
pinpoint the culprit automatically

Example

= For line # 1234,

= Times 1-1000000: 0 <=X <=3
= Time 1000001: X = Oxa3d025ef

Aha! must be an error

DIDUCE Design

= Monitors every memory access!

= Learns signature for the data accessed
by each bytecode from correct runs

= Report anomalies observed

= Anomalies signal cause of errors

Experience

= Pinpointed line of code causing errors

= Errors in imap servers:
Change triggers a latent error elsewhere

= Memory subsystem simulator:
otherwise unknown errors

= Reported corner cases of interest

Lessons

Dumb but tireless

= High overhead but pain-free

» Unaffected by programmers’
misconception

Finds many serendipitous design rules
Need to trigger just 1 of the rules
[Hangal & Lam, ICSE 02]

Summary

User-Supplied,
Application-
Specific

N4

Automatic
Extraction

De3|gn Rules

=N

Advanced Dynamic
Static Detection
Analysis & Recovery

Conclusions

New tools that exploit computing power
to manage software complexity

New advanced analyses
= Pointer alias analysis—-Binary decision diagrams

Analysis available to programmers
= PQL: easy to express execution patterns

Automatic design rule extraction
= |[nconsistencies = errors

