
Software Design RulesSoftware Design RulesSoftware Design Rules

Monica LamMonica LamMonica Lam

Stanford UniversityStanford UniversityStanford University

Joint work with: Sudheendra Hangal, David Heine, Ben Livshits,
Michael Martin, John Whaley

1

Software is Full of Errors

Error rate: 1-4.5 errors per 1000 lines
Windows 2000

35M LOC,
63000 known bugs at time of release
2 per 1000 lines

Large consumer software
Formal specification & verification
infeasible

2

Buffer Overruns

A buffer access must stay within bounds
Buffer overruns are responsible for over 50%
of major vulnerabilities
MS Blaster, Slammer, Code red, nimda, …,
Internet Worm, 1988
Responsible for damages in billions

3

Memory Leaks

All unused memory should be freed
once and only once
Memory exhaustion may cause long
running programs to fail.

4

SQL Injection Errors

Database

Web server
Front end

user “Give me Bob’s credit card #”
or

“Delete all records”

User may not supply SQL queries to
databases directly
One of top ten vulnerabilities

5

Happy-go-lucky SQL Query

User supplies: name, password

SELECT UserID, Creditcard
FROM Records
WHERE

Name = ‘ + name
+’ AND PW =‘ + password + ’

6

Fun with SQL

“ — ”: means “the rest are comments” in SQL
SELECT UserID, CreditCard

FROM Records
WHERE:

Name = ‘bob ’ AND PW = ‘foo’
Name = ‘bob’— ’ AND PW = ‘x’
Name = ‘bob’ or 1=1—’ AND PW = ‘x’
Name = ‘bob’; DROP Records—’ AND PW = ‘x’

7

Design Rules

Buffer overruns, memory leaks,
SQL injections

Same error is often repeated many times

May be specific to a language,
a class of applications, a program
Important: may be critical to security
Succinct: governs many lines of code

8

General Practice

Design rules are implicit
Violations of design rules rampant
Tools: purify,

grep, emacs,
program environments

9

Leverage Computer Power

Courtesy: Intel

10

Programs Don’t Grow
Exponentially!

0
10
20
30
40
50

1990 1995 2000 2005

Size of Microsoft Windows

M
ill

io
n

Li
ne

s
of

 C
od

e

NT3.1
95

98
NT5.0

2000
XP

11

This Talk

New generation of
“Computer-Aided Programming Tools”

to
enforce critical software design rules

12

Custom Design Rule Checkers

Intrinsa, Coverity: C checkers
Built-in rules for operating systems
Relatively simple analysis
Unsound
Found thousands of critical errors in
Windows, Linux, BSD, …

13

New-Generation Tools

Design Rules

Advanced
Static

Analysis

Dynamic
Detection

& Recovery

User-Supplied,
Application-

Specific

Automatic
Extraction

14

PQL: PQL:
a Program Query Languagea Program Query Language

15

PQL: a Program Query Language

Design Rules

Advanced
Static

Analysis

Dynamic
Detection

& Recovery

User-Supplied,
Application-

Specific

Automatic
Extraction

16

PQL Query

Pattern:
Illegal sequences of operations on
related objects
Looks like the simplest code excerpt
with pattern

Action:
Print out result, halt program, or recover

17

SQL Injection
x = req.getParameter();
stmt.executeQuery (x);

o1 = req.getParameter();
formal = o1;
o2.f = formal;
o3.g = o2.f;
stmt.executeQuery(o3.g);

getParameter

executeQuery

x

PQL:

18

Basic Question

p1 and p2 point to the same object?
Undecidable!

getParameter executeQueryx

p1 p2

19

Dynamic Checker

p1 and p2 point to the same object?
Instrument Java byte codes
getParameter: record ID of p1’s pointee
executeQuery:

check if p2’s pointee has been recorded

getParameter executeQueryx

p1 p2

20

Static Checker

p1 and p2 point to same object?
Pointer alias analysis

getParameter executeQueryx

p1 p2

21

Pointer Alias AnalysisPointer Alias Analysis

[Whaley & Lam, PLDI 2004]

22

Pointer Analysis

h1: v1 = new Object();
h2: v2 = new Object();

v1.f = v2;
v3 = v1.f;

Input Relations
vPointsTo(v1,h1)
vPointsTo(v2,h2)
Store(v1,f,v2)
Load(v1,f,v3)

Output Relations
hPointsTo(h1,f,h2)
vPointsTo(v3,h2)

v1 h1

v2 h2

f
v3

23

hPointsTo(h1, f, h2) :- Store(v1, f, v2),
vPointsTo(v1, h1),
vPointsTo(v2, h2).

v1 h1

v2 h2

f

Inference Rule in Datalog

v1.f = v2;

Stores:

24

Pointer Alias Analysis

Specified by 5 Datalog rules
Creation sites
Assignments
Stores
Loads
Type filter

Apply rules until they converge

25

Method Invocations

Context insensitive is imprecise
Unrealizable paths

Object id(Object x) {
return x;

}

a = id(b); c = id(d);

26

Object id(Object x) {
return x;

}

Object id(Object x) {
return x;

}

Context Sensitivity

Context sensitivity is important for precision.
Conceptually give each caller its own copy.

a = id(b); c = id(d);

27

Cloning-Based Analysis

Simple brute force technique.
Clone every path through the call graph.
Run context-insensitive algorithm on
expanded call graph.

The catch: exponential blowup

28

Cloning is exponential!

29

Recursion

Actually, cloning is unbounded in the
presence of recursive cycles.
Technique: We treat all methods
within a strongly-connected
component as a single node.

30

Recursion

A

G

B C D

E F

A

G

B C D

E F E F E F

G G

31

Top 20 Sourceforge Java Apps
Number of Clones

1.E+00
1.E+02
1.E+04
1.E+06
1.E+08
1.E+10
1.E+12
1.E+14
1.E+16

1000 10000 100000 1000000
Size of program (variable nodes)

N
um

be
r o

f c
lo

ne
s

1016

1012

108

104

100

32

Cloning is infeasible (?)
Typical large program has ~1014 paths
If you need 1 byte to represent a clone:

256 terabytes of storage
> 12 times size of Library of Congress
1GB DIMMs: $98.6 million

Power: 96.4 kilowatts (128 homes)
300 GB hard disks: 939 x $250 = $234,750

Time to read sequential: 70.8 days

33

BDD comes to the rescue

Many similarities across contexts.
Many copies of nearly-identical results.

BDDs (binary decision diagrams)
can represent large sets of redundant
data efficiently.

34

Static Checker Generation

PQL Query

Datalog

BDD code

2 lines

10 lines

1000 lines

35

BDD: Binary Decision DiagramsBDD: Binary Decision Diagrams

36

Call Graph Relation

Call graph expressed as a relation.
Five edges:

Calls(A,B)
Calls(A,C)
Calls(A,D)
Calls(B,D)
Calls(C,D)

B

D

C

A

37

Call Graph Relation
Relation expressed as a
binary function.

A=00, B=01, C=10, D=11

01011

11110
00001
01001
00101
11101
00011

00111
1

1
0
0
1
1
0
0
x3

0111

0010
0110
0010
1100
1000
1100
0000
fx4x2x1

B

D

C

A 00

1001

11

38

Binary Decision Diagrams
Graphical encoding of a truth table.

x2

x4

x3 x3

x4 x4 x4

0 0 0 1 0 0 0 0

x2

x4

x3 x3

x4 x4 x4

0 1 1 1 0 0 0 1

x1 0 edge
1 edge

39

Binary Decision Diagrams
Collapse redundant nodes.

x2

x4

x3 x3

x4 x4 x4

0 0 0 0 0 0 0

x2

x4

x3 x3

x4 x4 x4

0 0 0 0

x1

11 1 1 1

40

Binary Decision Diagrams
Collapse redundant nodes.

x2

x4

x3 x3

x4 x4 x4

x2

x4

x3 x3

x4 x4 x4

0

x1

1

41

Binary Decision Diagrams
Collapse redundant nodes.

x2

x4

x3 x3

x2

x3 x3

x4 x4

0

x1

1

42

Binary Decision Diagrams
Collapse redundant nodes.

x2

x4

x3 x3

x2

x3

x4 x4

0

x1

1

43

Binary Decision Diagrams
Eliminate unnecessary nodes.

x2

x4

x3 x3

x2

x3

x4 x4

0

x1

1

44

Binary Decision Diagrams
Eliminate unnecessary nodes.

x2

x3

x2

x3

x4

0

x1

1

45

Binary Decision Diagrams

Represent tiny and huge relations
compactly
Size depends on redundancy

Similar contexts have similar numberings
Variable ordering in the BDD

10 minutes or “runs out of memory”
Active machine learning algorithm

46

Expanded Call Graph
A

DB C

E

F G

H

0 1 2

A

DB C

E

F G

H

E E

F F GG

H H H H H

0 1
2

21
0

47

Numbering Clones
A

DB C

E

F G

H

A

DB C

E

F G

H

E E

F F GG

H H H H H

0 0 0

0 1 2

0-2 0-2

0-2 3-5

0 0 0

0 1 2

0 1
2

21
0

0 1 2 3 4 5

0

48

Experience
Context-sensitive points-to analysis

800K byte codes in less than 20 minutes

PQL suitable for many known error patterns
SQL injection
Resource leakage
Persistence object management

Applied to 6 large programs unknown to us
Found 44 critical errors easily

49

Dynamic
Detection

& Recovery

Automatic
Extraction

Dynamic
Detection

& Recovery

Advanced
Static

Analysis

User-Supplied,
Application-

Specific

Automatic
Extraction

Dynamic
Detection

& Recovery

Automatic
Extraction

New-Generation Tools

Design Rules

Dynamic
Detection

& Recovery

Advanced
Static

Analysis

User-Supplied,
Application-

Specific

Automatic
Extraction

PQL

50

Automatic
Design Rule Extraction

Too many design rules to specify
Principle: Most of the code is correct
Inconsistency = Errors

ClouseauClouseau: :
a static memory leak detectora static memory leak detector

52

Ownership Model

Owner pointer
Obligated to delete object, or
pass ownership to another pointer

Every object has an owner pointer
No memory leaks, no double deletes

53

Past Experience

Decorate each function parameter with
“own” “not-own”
Not enforced many mistakes

54

Assignment Statement

a = new int;

b = a;

delete a;

a = new int;

b = a;

delete b;

int

a b

int

a b

b = a own(b) = 0
own(a) = own(a’) + own(b’)

own(b),own(a)

own’(b),own’(a)

Clouseau
Automatically infers function signatures

Based on “new” “delete”
Constraint: there is always 1 owning pointer

Inconsistency: error
A 125K-line commercial program

50 lines of user specification on
container structure (generic data types)
Root-causes 82% of memory leaked dynamically
Found many additional errors

[Heine&Lam, PLDI 2003]

56

Clouseau

Dynamic
Detection

& Recovery

Automatic
Extraction

Dynamic
Detection

& Recovery

Advanced
Static

Analysis

User-Supplied,
Application-

Specific

Automatic
Extraction

DIDUCE

New-Generation Tools

Design Rules

Dynamic
Detection

& Recovery

Advanced
Static

Analysis

Automatic
Extraction

57

DIDUCEDIDUCEDIDUCE

Dynamic Invariant Deduction
∪

Checking Engine
(deduces, but sometimes incorrectly)

58

Motivation

Difficulty in finding
root cause of complex errors

DIDUCE can potentially
pinpoint the culprit automatically

59

Example

For line # 1234,

Times 1-1000000: 0 <= X <= 3
Time 1000001: X = 0xa3d025ef

Aha! must be an error

60

DIDUCE Design

Monitors every memory access!
Learns signature for the data accessed
by each bytecode from correct runs
Report anomalies observed
Anomalies signal cause of errors

61

Experience

Pinpointed line of code causing errors
Errors in imap servers:
Change triggers a latent error elsewhere
Memory subsystem simulator:
otherwise unknown errors

Reported corner cases of interest

62

Lessons
Dumb but tireless

High overhead but pain-free
Unaffected by programmers’
misconception

Finds many serendipitous design rules
Need to trigger just 1 of the rules
[Hangal & Lam, ICSE 02]

63

Summary

Design Rules

Advanced
Static

Analysis

Dynamic
Detection

& Recovery

User-Supplied,
Application-

Specific

Automatic
Extraction

64

Conclusions
New tools that exploit computing power
to manage software complexity
New advanced analyses

Pointer alias analysis--Binary decision diagrams

Analysis available to programmers
PQL: easy to express execution patterns

Automatic design rule extraction
Inconsistencies errors

